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Abstract

Mechanical structures encounter vibration in response to environmental conditions and dy-

namic loads. In most circumstances, vibration contributes to mechanical fatigue which can

eventually lead to catastrophic failure. Consequently, vibration control is a necessity for

prolonging the operational life of structures.

Piezoelectric and electromagnetic transducers have been used for control of vibration for

many years. They normally sense mechanical vibration and generate an opposing vibration

through another piezoelectric and electromagnetic transducer. This is usually referred to as

active feedback vibration control.

Another vibration control strategy senses and actuates simultaneously through an appropri-

ately designed electrical impedance which is connected to the terminals of a single transducer.

This technique requires no additional sensor, has improved robustness and stability, and a

similar feedback structure compared to active feedback vibration control.

The objective of this thesis is to develop new vibration control techniques by expanding on

both the previously mentioned strategies.

The first part of this thesis considers connecting an electrical impedance to a piezoelectric

transducer to control vibration. This part reinforces that this vibration control strategy

can be modelled as a variation of active feedback vibration control whereby the impedance

parameterises the effective controller. A series of new vibration controllers are then presented.

Applying the knowledge gained in the first part of this thesis, the second part considers

replacing the piezoelectric transducer with an electromagnetic transducer. Although the

underlying dynamics and physical properties of the transducers are different, the feedback

structures are remarkably similar to that of active feedback vibration control. A number of

new vibration control strategies are proposed for a variety of mechanical systems.

Throughout the thesis, theoretical ideas and concepts are experimentally compared and val-

idated on simple mechanical apparatuses to evaluate their vibration control performance.

iii



iv



Acknowledgments

Exploring the area of vibration control requires a large amount of technical and capital

infrastructure. I would therefore like to extend my personal gratitude to the Laboratory

for Dynamics and Control of Smart Structures, University of Newcastle, and the sometimes

forgotten Australian tax payer for supporting me.

Also, I would like to acknowledge and sincerely thank my supervisor, Dr. S. O. Reza Mo-

heimani, for his direction and support throughout the course of my Ph.D. research, and my

colleague, Dr. Andrew J. Fleming, for his assistance and knowledge of electronics, control

theory and theoretical analysis. My thanks to Mr. Dominik Niederberger and Mr. Ben

Vautier for their theoretical and technical suggestions. Mr. Ian Powell, Mr. Roy Murcott

and Mr. Russell Hicks from the university technical staff were also an important resource for

design and construction of electronic instruments and mechanical apparatuses.

My sincere thanks to my good friends Andrew, Marco, Wade and Scott for their contributions

and understanding.

v



vi



Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Present Vibration Control Techniques . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement and Motivation . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Piezoelectric Shunt Control 11

2 Piezoelectric Shunt Damping 13

2.1 Piezoelectric Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Modelling a Piezoelectric Transducer . . . . . . . . . . . . . . . . . . . 14

2.2 Review of Piezoelectric Shunt Damping . . . . . . . . . . . . . . . . . . . . . 15

2.3 Review of Synthetic Impedance Device . . . . . . . . . . . . . . . . . . . . . 18

2.4 Modelling a Mechanical System . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.4.1 Modelling the Presence of Shunt Circuit . . . . . . . . . . . . . . . . 23

2.5 Proposed Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Current-Flowing Shunt Controller . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Series-Parallel Shunt Controller . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Resonant Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.4 Robust Passive Shunt Controller . . . . . . . . . . . . . . . . . . . . . 37

2.6 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Piezoelectric Experimental Apparatuses . . . . . . . . . . . . . . . . . 39

2.6.2 Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Multivariable Piezoelectric Shunt Control 67

3.1 Dynamics of a Multivariable System . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Stability of the Multivariable Shunted System . . . . . . . . . . . . . . . . . 71

3.3 Propose Decentralised Shunt Controllers . . . . . . . . . . . . . . . . . . . . . 75

3.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Multivariable Experimental Apparatus . . . . . . . . . . . . . . . . . . 76

3.4.2 Model Identification for Multivariable System . . . . . . . . . . . . . . 77

3.4.3 Implementation of a Multiport Synthetic Admittance . . . . . . . . . 79

3.4.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



II Electromagnetic Shunt Control 87

4 Electromagnetic Shunt Damping 89

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Electromagnetic Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Modelling a Mechanical System . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Shunted Composite Electromechanical System . . . . . . . . . . . . . 94

4.3.2 State-space Shunted Composite Electromechanical System . . . . . . 96

4.4 Proposed Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Capacitor-Resistor Controller . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2 Ideal Negative Inductor-Resistor Controller . . . . . . . . . . . . . . . 102

4.4.3 Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Electromagnetic Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.2 Implementing Electromagnetic Shunt Controllers . . . . . . . . . . . 108

4.5.3 Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Electromagnetic Shunt Isolation 125

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.1 Shunted Composite Electromechanical System . . . . . . . . . . . . . 129

5.2.2 State-space Shunted Composite Electromechanical System . . . . . . . 132

ix



5.3 Proposed Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Capacitor-Resistor Controller . . . . . . . . . . . . . . . . . . . . . . 135

5.3.2 Ideal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.3 Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 Electromagnetic Isolation Apparatus . . . . . . . . . . . . . . . . . . 138

5.4.2 Shunt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Proof-Mass Inertial Vibration Control 157

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2.1 Electromagnetic Transducer Dynamics . . . . . . . . . . . . . . . . . 159

6.2.2 Mechanical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2.3 Shunted Composite Electromechanical System . . . . . . . . . . . . . 161

6.3 Impedance Synthesis Controller Design . . . . . . . . . . . . . . . . . . . . . 163

6.3.1 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.1 Proof-Mass Inertial Experimental Apparatus . . . . . . . . . . . . . . 167

6.4.2 Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Conclusions 177

x



Bibliography 179

xi



xii



Chapter 1

Introduction

Vibration is defined as the to and fro of an object, such as a clock pendulum. Mechanical

structures encounter vibration in response to environmental and operating conditions. Some-

times vibration is desired, as in the case of the vibrating string on a musical instrument. Often

it is unwanted, as in the case of the wing on an aircraft, because contributes to fatigue which

leads to catastrophic failure of the mechanical structure. Consequently, vibration control is

essential for the optimal performance and safety of many applications.

1.1 Present Vibration Control Techniques

A typical vibration control scenario is shown in Figure 1.1, whereby a mechanical structure, in

the form of a bridge, is disturbed by a wind disturbance force f . By minimising the vibration,

or energy of the system, this effectively increases the life and integrity of the structure. For

the bridge, it may be desirable to minimise the velocity at point ν on the structure as this

effectively reduces the energy of the system. Minimising strain, acceleration or displacement

may be advantageous depending on the application.

At present, there are four vibration control fields: (1) passive, (2) active feedback, (3) self-

sensing and (4) shunt.

Passive vibration control consists of two main strategies; viscoelastic materials (or viscoelastic

damping) and tuned vibration absorbers. Viscoelastic materials, normally rubber, induce

damping through the natural damping properties of the material. Tuned vibration absorbers

are a simple mass-spring-damper system that is tuned to the required control performance.

1



f

Wind Disturbance
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Figure 1.1: Typical vibration control scenario.

See reference [31] for more details on passive vibration control.

Active feedback vibration control requires the use of sensors and actuators. Vibration is

sensed using an accelerometer, a strain gauge or piezoelectric transducer. An actuator volt-

age Va is derived to counteract the sensed measurement. This is a typical regulator control

problem, as shown in Figure 1.2, where P is the plant, K is the controller, w is the applied

disturbance, z is the performance output and y is the sensed output. For example, con-

sider Figure 1.1 where ν is the velocity performance signal and f is the spatial disturbance.

The measured output y would typically be obtained from an additional transducer. The

controller K is designed to minimise the relationship from applied disturbance f (or w) to

the performance variable ν (or z). Active feedback control difficulties are due, in the most

part, to the intrinsic nature of the plant P . These systems contain a large number of lightly

damped resonant modes which create major challenges in modelling and control design. Ad-

ditionally, environmental factors alter the resonance frequencies, compromising the stability

margins and restricting the performance. Examples of active feedback control can be found

in references [45, 46, 49, 75].

Self-sensing or sensori-actuation vibration control was established by Dosch, Inman and Gar-

cia [31] where a single transducer could amalgamate both functions of sensing and actuating.

By deducting the capacitive voltage drop from the applied terminal voltage, an estimation

of the internal piezoelectric strain voltage can be achieved through a bridge circuit. The

reconstructed strain voltage can be employed as an active feedback sensor effectively elimi-

nating the need for an additional transducer for actuation. A similar rate-of-strain estimation

2
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Figure 1.2: Typical regulator control problem.

technique is also offered in [7]. Although piezoelectric self-sensing techniques are subject to

the typical problems linked to active feedback control schemes, an added benefit is gained.

The transfer function from an applied actuator voltage to the sensed strain is in effect collo-

cated [78]. In certain controller classes, collocation achieves closed-loop stability, robustness

and generally reduces the complexity of the design process [78]. Piezoelectric self-sensing

methodology estimation is highly reliant on the transducer capacitance value. If the sensing

capacitance in the bridge circuit is not perfectly balanced to the transducer capacitance, it

can result in strain estimation errors. If an erroneous estimate is used within a feedback

control loop, such uncertainty may severely effect performance and/or cause instability. In

addition, the sensing circuit may detune due to variations to temperature, load and age of

the piezoelectric transducer. An attempt to address the problems of capacitance sensitivity

can be found in [2, 24, 107]. In spite of the related problems, a number of applications have

appeared throughout the literature [5, 16, 50, 72, 104].

Shunt control requires the connection of an electrical impedance to the terminals of a trans-

ducer with the aim to control vibration. Electrical impedance designs include resistors [41, 48],

inductive networks [14, 15, 41, 48, 56, 112, 113, 114, 117], switched networks [26, 29, 92], neg-

ative capacitors [10, 11, 115] and active impedances [39]. These methodologies will be fully

discussed in greater detail in Chapter 2. Shunt control has a number of advantages, when

compared to active feedback control schemes, as most configurations do not require a para-

metric model of the plant. Therefore, this simplifies the implementation and tuning process.

Shunt controllers, like self-sensing controllers, are also perfectly collocated [78] and require no

additional feedback sensors. In some circumstances, shunt controllers may not require high

voltage electronic amplifiers which are needed for active feedback control schemes [41, 48].

This thesis is focused on shunt control, but for the sake of completeness, other vibration

control strategies may be cited.
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1.2 Problem Statement and Motivation

Mechanical structures encounter vibration in response to environmental and operating con-

ditions. Sometimes these vibrations are desired, as in the case of the vibrating string on a

musical instrument. Often they are unwanted, for instance the wing on an aircraft, where

vibration can lead to the catastrophic failure of the structure. Consequently, control of vi-

bration is a necessity in many applications to prolong their structural life.

Vibration control has the potential to be successfully applied to an array of applications

ranging from simple consumer items to advanced industrial uses to increase operational per-

formance and/or personal safety.

Vibration control innovations in consumer items such as snow skis, snowboards, mountain

bikes, tennis and squash rackets are currently being assessed [16, 54, 67]. Performance benefits

include improved power, comfort, control and operation [16, 54, 67].

Many commercial computer drives, digital-video-disk (DVD) and compact-disk (CD) drives

incorporate vibration control systems. By controlling the mechanical vibration of the read/write

head, the seek-time is decreased, hence the data rate can be improved [44].

The control of aerospace vibration is also the focus of a significant research effort. During

certain modes of flight, buffeting loads on aerospace structures can result in high levels

of vibration. Such vibration can lead to mechanical fatigue, a smaller flight envelope and

reduction of lift performance of the aircraft [97]. Other examples of aerospace vibration

control can be found in references [5, 50, 58, 72, 111].

Additional vibration control opportunities include: suppression of acoustic radiation from

underwater submersibles [118], launch vehicle acoustic noise mitigation [30, 90], acoustic

transmission reduction panels [71, 96], active antenna structures [45], nano-positioning sys-

tems [27], underwater sonar [101], car suspension systems [73], vibration isolation platforms

[95], control of enclosed-sound fields [55], magnetic levitation [19, 108], magnetic bearings

[87], micro-electro-mechanical-systems (MEMS) devices [6] and Stewart platforms [28].

1.3 Thesis Overview and Contributions

In this thesis, shunt control is defined as the attachment of an electrical impedance to the

terminals of an electromechanical transducer, either piezoelectric or electromagnetic, in order

4
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Figure 1.3: Summary of shunt vibration control. Shaded region indicates research areas covered

within this thesis.

to control vibration. At present, there are two very distinct fields of shunt control; piezoelec-

tric and electromagnetic, as illustrated in Figure 1.3. The thesis illustrates that both these

control strategies compliment each other. Therefore, the following work will be presented in

two unique parts.

Part I will concentrate on piezoelectric shunt control while Part II will focus on electromag-

netic shunt control. The shaded region of Figure 1.3 indicates work addressed in this thesis.

Topics not shaded will not be dealt with as, for the most part, they are still under conceptual

development.

Part I contains two chapters: 2) Piezoelectric Shunt Damping, and 3) Multivariable Piezo-

electric Shunt Damping.

Chapter 2 begins with a review of piezoelectric transducers and present piezoelectric shunt

control strategies. It is then followed by the development of several new piezoelectric shunt

controllers. The material in this chapter was presented in the conference papers [C7, C9,

C10, C11, C12, C13 and C14] and subsequently the journal papers [J3, J5, J6 and J8]. See

proceeding section, Section 1.3.1, for conference and journal paper details.

Chapter 3 follows on from Chapter 2 by extending the explored concepts to shunt control

using multiple piezoelectric transducers. Concepts presented in this chapter were published

in the journal paper [J4].
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Part II contains three chapters: 4) Electromagnetic Shunt Damping, 5) Electromagnetic

Shunt Isolation, and 6) Proof-Mass Inertial Vibration Control.

Chapter 4 introduces electromagnetic transducers and builds on Part I by developing the

concept of electromagnetic shunt control. This chapter also develops three novel electromag-

netic shunt controllers. This chapter was presented in the conference papers [C1, C2, C4, C5

and C6] and journal papers [J1 and J2].

In Chapter 5 an electromagnetic shunt control is applied to a simple mechanical isolation

system. Several different electromagnetic shunt controllers were developed and explored for

this scenario. Some material in this chapter was presented in the conference paper [C3].

Chapter 6 applies electromagnetic shunt control and its associated controller to a simple

proof-mass inertial system. Chapter 6 is based on the journal paper [JR1].

All of the above control strategies will be validated on experimental apparatuses.

The thesis is concluded in Chapter 7, with a discussion and suggests future research oppor-

tunities for shunt control.

1.3.1 Publications

Outcomes throughout the course of this research have included nine international journal

papers and fourteen international conference papers. Details are listed below.

Journal Papers

[J1] Synthesis and Implementation of Sensor-Less Active Shunt Controllers for Electromag-

netically Actuated Systems.

A. J. Fleming, S. O. R. Moheimani, S. Behrens

IEEE Transactions on Control Systems Technology

March 2005, Volume 13, Number 2, Pages 246-261

[J2] Passive Vibration Control via Electromagnetic Shunt Damping.

S. Behrens, A. J. Fleming, S. O. R. Moheimani

IEEE/ASME Transactions on Mechatronics

February 2005, Volume 10, Number 1, Pages 118-122
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[J3] Multi-mode Piezoelectric Shunt Damping with a Highly Resonant Impedance.

S. O. R. Moheimani, S. Behrens

IEEE Transactions on Control Systems Technology

May 2004, Volume 12, Number 3, Pages 484-491

[J4] Dynamics, Control and Stability of Multivariable Piezoelectric Shunts.

S. O. R. Moheimani, A. J. Fleming, S. Behrens

IEEE/ASME Transactions on Mechatronics

March 2004, Volume 9, Number 1, Pages 87-99

[J5] Multiple Mode Current Flowing Passive Piezoelectric Shunt Controller.

S. Behrens, S. O. R. Moheimani, A. J. Fleming

ASME Journal of Sound and Vibration

October 2003, Volume 266, Number 5, Pages 929-942

[J6] On the Feedback Structure of Wideband Piezoelectric Shunt Damping Systems.

S. O. R. Moheimani, A. J. Fleming, S. Behrens

IOP Smart Materials and Structures

January 2003, Volume 12, Pages 49-56

[J7] Reducing the Inductance Requirements of Piezoelectric Shunt Damping Systems.

A. J. Fleming, S. Behrens, S. O. R. Moheimani

IOP Smart Materials and Structures

January 2003, Volume 12, Pages 57-64

[J8] A Highly Resonant Controller for Multi-mode Piezoelectric Shunt Damping.

S. O. R. Moheimani, A. J. Fleming, S. Behrens

IEE Electronics Letters

December 2001, Volume 37, Number 25, Pages 1505-1506

Journal Papers in Review

[JR1] Proof-mass Inertial Vibration Control using a Shunted Electromagnetic Transducer

A. J. Fleming, S. Behrens, S. O. R. Moheimani

IEEE/ASME Transactions on Mechatronics

Submitted December 2003
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[JR2] Adaptive Electromagnetic Shunt Dampening

D. Niederberger, S. Behrens, A. J. Fleming, S. O. R. Moheimani, M. Morari

IEEE/ASME Transactions on Mechatronics

Submitted November 2003

Conference Proceedings

[C1] Control Orientated Synthesis of Electromagnetic Shunt Impedances for Vibration Con-

trol.

S. Behrens, A. J. Fleming, S. O. R. Moheimani

IFAC Mechatronics 2003

December 2004, Manly, NSW, Australia
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[C4] Active LQR and H2 Shunt Control of Electromagnetic Transducers.

A. J. Fleming, S. Behrens, S. O. R. Moheimani

IEEE Conference on Decision and Control
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Chapter 2

Piezoelectric Shunt Damping

By attaching a piezoelectric transducer to a mechanical structure and shunting the terminals

of the transducer with appropriate designed electrical impedance, vibration control can be

mitigated. This technique is commonly referred to piezoelectric shunt damping.

This chapter starts with a brief introduction to piezoelectric transducers and current piezo-

electric shunt damping techniques. A model for a piezoelectric shunt damping is then de-

veloped to aid in the design of four new vibration controllers. The developed model, and

controllers, are then verified experimentally on three piezoelectric laminated structures.

2.1 Piezoelectric Transducers

In 1880 Pierre and Jacques Curie discovered and published the piezoelectric effect while

studying the formation of an electrical charge on the surface of certain naturally occurring

crystals under mechanical stress. Further research revealed the opposite effect when they

applied an electrical charge to the crystal, a volume deformation was noted.

Quartz, topaz and Rochelle salt [18] are examples of naturally occurring materials which

exhibit a weak piezoelectric effect. Progress in material development has allowed scientists

to manufacture piezoelectric materials with characteristics that are better suited to piezo-

electric transducers. The two most commonly used piezoelectric materials in transducer

applications are lead-zirconium-titanate (PZT) and polyvinylidene-fluoride (PVDF). PZT is

a stiff ceramic material that is regularly used for actuating applications due to its enhanced

electromechanical coefficients. For sensing applications, the semi-crystalline polymer film
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PVDF is frequently used because its malleable properties make it easier to cut and shape.

However, for the same voltage PZT produces ∼ 5 times more strain, is ∼ 40 times more rigid

and has a permittivity ∼ 100 times greater than PVDF.

Recent developments suggest that single piezoelectric crystals [103] possess exceptional prop-

erties and are poised to revolutionise piezoelectric materials, as well as transducers [103].

Single piezoelectric crystals exhibit nearly 5 times the strain and 3 times the electromechan-

ical coupling than conventional PZT materials.

Additional information about piezoelectric materials can be found in references [1, 3, 43, 62,

63, 64, 88].

2.1.1 Modelling a Piezoelectric Transducer

For vibration control, a thin sliver of piezoelectric material, normally PZT, is sandwiched

between two conducting layers. This forms a piezoelectric transducer, as shown in Figure

2.1. The transducer is then glued to the surface or laminated within the mechanical structure

using a strong adhesive materials.

Since piezoelectric transducers are multi-dimensional devices, as shown in Figure 2.1, the

modelling the transducer is represented by

εi = SE
ijσj + dmiEm

Dm = dmiσi + ζikEk, (2.1)

where i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 represent the coordinate system for the transducer

element [43]. Notations E, ε, D, σ, SE , d and ξ correspond to the electrical field, strain,

electrical displacement, stress, elastic compliant, piezoelectric coefficient and dielectric per-

mittivity. A more detailed explanation can be found in [4, 10, 22, 43].

When a piezoelectric transducer is used as a sensor, the strain over the area covered by the

transducer is proportional to the open-circuit voltage. When used as an acuator, an applied

voltage results in a strain. Piezoelectric transducers behave electrically like a series capacitor

and mechanically like a stiff spring [63]. It is common to model piezoelectric transducers

as a series capacitor Cp and a strain dependent voltage source Vp, as shown in Figure 2.1

[31, 48, 110]. However, more complex models can be found in [3, 4, 10, 22, 43].
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Figure 2.1: Piezoelectric transducer (a) and electrically equivalent model (b).

2.2 Review of Piezoelectric Shunt Damping

Piezoelectric shunt damping of mechanical structures is now an active area of research in

which new applications are emerging. For some interesting applications, refer to [5, 16, 50,

72, 102, 104, 114] and references therein.

The first documented piezoelectric shunt damping technique was proposed by Forward [41].

Forward suggested that by shunting the terminals of a structurally laminated piezoelectric

transducer with a resistor, he was able to experimentally demonstrate mechanical damp-

ing. Adding a resistor to the piezoelectric transducer is equivalent to viscoelastic dampener

[51, 91]. With existing transducers, resistive impedance offers very little mechanical damp-

ing. This technique is equivalent to an extremely light viscoelastic dampener treatment [48].

Future transducers utilising high electromechanical coupling coefficients may be of greater

use [103].

Initially appearing in reference [41], piezoelectric shunt damping is generally credited to

Hagood et al. [48]. By placing a series inductor-resistor network across the terminals of the

piezoelectric transducer, it was demonstrated that the amplitude of a single structural mode

was dramatically reduced. Because of the piezoelectric transducer’s intrinsic capacitance, the

inductor-resistor network is tuned to a single structural mode. This technique is equivalent

to a passive tuned mechanical absorber [51, 91], where the introduced dynamics by the

shunt circuit act to effectively increase mechanical damping [48]. Reference [48] introduced

a theoretical method for determining an optimal resistance value for the inductor-resistor

network. The parallel circuit variation to [48] was later proposed by [112]. Although the two
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circuits, series and parallel, achieve comparable performance levels, the parallel network is

less sensitive to sub-optimal resistance values [10, 12]. A more in-depth review of single-mode

piezoelectric shunt damping can be found in reference [10].

Single-mode damping using many piezoelectric transducers and series/parallel inductor-resistor

damping circuits can reduce multiple structural modes. However, bonding to or embedding

multiple piezoelectric shunts onto/into the host structure may result in problems. The me-

chanical structure may be too small to accommodate all the transducers and/or the shunt

circuits, and inclusion of many transducers may weaken the mechanical structure.

The methods suggested in references [41, 48, 112], although effective, can only be applied

to one structural mode. However, following [48], a number of authors attempted to extend

this technique to allow for passive damping of several modes. Reference [56] suggests parallel

combinations of a series of inductor-resistor circuits with several series capacitor-inductor-

resistor branches. The authors experimentally demonstrated the effectiveness of this specific

structure in reducing vibrations due to two modes of a structure. However, this synthesis

procedure is not straightforward, making it difficult to extend the application to more modes.

In references [113, 114, 117], the authors proposed the use of current-blocking circuits to

separate inductor-resistor branches tuned to each resonance frequency. This method works

well for a small number of modes. However, as the number of modes increases so does the

complexity of the shunt circuit network, resulting in implementation difficulties. References

[12, 35] show an effective method for determining the optimal resistance values for [113, 114,

117]. A more in-depth review can be found in reference [10].

More recently the current-flowing shunt controller was introduced in [14, 15], which is ex-

amined in greater detail later in the thesis. This technique follows on from the previous

technique [113, 114, 117]. The idea is to introduce a current-flowing capacitor-inductor cir-

cuit into each inductor-resistor branch. The complexity of the electrical shunt proposed in

[14, 15] is considerably less than that proposed in [113, 114, 117]. However, the freedom of

choice of the capacitive, or alternatively the inductive elements, may complicate the design

process.

The current-flowing circuit dual, or series-parallel circuit, is intended as a method for lowering

inductive component values [13]. The series-parallel circuit will also be examined in greater

detail in later sections.

So far, the multi-mode techniques presented are essentially variations of the original single-

mode circuits. An innovative approach to designing piezoelectric shunt damping circuits
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or control orientated shunt controllers was presented by [84]. By casting the system as a

feedback control problem, an effective controller can be designed and from this design the

shunt impedance can be deducted. The passivity and therefore the stability of the shunted

system can be guaranteed [84] under certain assumptions. This controller has comparable

benefits to that of current-flowing and series-parallel circuits; low in order, easy to tune and

suitable for modally dense systems. Both these circuit designs will also be examined in greater

detail in Section 2.5.3.

Active shunt impedances cannot be implemented using passive elements such as capacitors, in-

ductors and resistors [59]. For example, the negative capacitor shunt circuit [10, 11, 115, 118]

is an elementary technique for broad-band piezoelectric shunt damping. Negative capacitor

shunts are immune to structural variations due to operational and environmental conditions,

but variations in the transducer dynamics will effect the control performance and stability.

Overall observations from [10, 11, 115, 118] suggest active shunt impedances provide greater

vibration suppression than passive shunts, but the system stability is not guaranteed.

In an effort to eliminate the need for simulated inductors, as required for the majority of

passive shunt circuits [41, 48, 112], researchers have developed switched shunt or switched

stiffness techniques [26]. Currently there are three types of shunts, where the piezoelectric

transducer is in series with a switch [26] or a switch in series/parallel with a capacitor [29],

a switch in series with a resistor [23] and a switch in series with an inductor [92]. For these

techniques, determining the passive element (i.e. capacitor, resister or inductor) and/or the

switching cycle for the switch is not straight forward. These techniques are only applicable

to single-degree-of-freedom mechanical structures or mechanical structures with sinusoidal

disturbances. However, the authors have tried to conjure some theory to these non-trivial

problems.

Vibration control using shunt impedance could be considered as a standard regulator feedback

control problem where the controller is cast as an impedance. This will be referred to as

impedance synthesis [37, 39]. These techniques could include LQG, H2 and H∞ controller

designs to determine a suitable impedance. Reference [39] first proposed this technique and

raised several interesting observations. Similar synthesis techniques will be presented in Part

II of this thesis in the context of electromagnetic systems.
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Figure 2.2: Arbitrary impedance Z(s) implemented by a current-controlled-voltage-source (a)

and voltage-controlled-current-source (b).

2.3 Review of Synthetic Impedance Device

The main difficulty associated with implementing piezoelectric shunt impedances is that they

often require very large inductors in the order of thousands of Henries. Synthetic inductors

constructed from opamps have been proposed as a possible solution [93]. However, if a large

number of modes are to be controlled, such as the case for multi-mode shunts, the construction

of the shunt circuit requires a considerable number of high voltage opamps. These circuits

have numerous limitations. They are large in size, require an external power supply, are

difficult to initially tune, are sensitive to temperature and have voltage limitations due to

internal gains of the simulated inductor circuit.

To overcome the simulated inductance problems the synthetic admittance circuit was first

proposed by [36]. This technique allowed for the implementation of an impedance, or admit-

tance, shunt circuit in an efficient way. The author [36] demonstrated implementation of a

series inductor-resistor shunt controller without the use of a synthetic inductor.

Recently a second generation of the synthetic admittance has been developed whereby the

new technique has current or voltage feedback [40]. Consider a two-terminal device capable of

implementing any arbitrary shunt impedance, as shown in Figure 2.2. An arbitrary impedance

Z(s) can be established at the terminals by either sensing a current iz and applying a voltage

vz, or sensing a voltage vz and applying a current iz.

Referring to Figure 2.2 (a), the voltage vz(t) can be ascertained by sensing the current iz(t),
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i.e. vz(t) = f(iz(t)). That is, vz(t) = z(t)iz(t) where z(t) is the desired linear transfer

function for the impedance. Alternatively, in the Laplace domain

Vz(s) = Z(s)Iz(s). (2.2)

To implement the required impedance Z(s), a current-controlled-voltage-source (CCVS) is

used, as shown in Figure 2.3 (a). In Figure 2.3 (a), within the high frequency bandwidth

of the control loop, the reference potential Vref appears across the load, i.e. a unity gain

voltage amplifier. The additional resistance and differential amplifier generate the current

measurement VR with gain Rs V/A.

Similarly for Figure 2.2 (b), the current iz(t) can be ascertained by sensing the voltage vz(t),

i.e. iz(t) = f(vz(t)). That is, iz(t) = y(t)vz(t) where y(t) is the desired linear transfer

function for the admittance i.e. y(t) = 1
z(t) . In the Laplace domain,

Iz(s) = Y (s)Vz(s) =
1

Z(s)
Vz(s). (2.3)

A voltage-controlled-current-source (VCCS) is required to implement an admittance Y (s),

as shown in Figure 2.3 (b). In Figure 2.3 (b), within the high frequency bandwidth of the

control loop, the reference potential Vref appears across the sensing impedance Rs, thus, the

resulting current is described by IL(s)
Vref (s) = 1

Rs
.

Selecting the right configuration for implementing CCVS or VCCS will depend on the relative

order of the desired impedance. Practical digital implementation of improper [68] transfer

functions is not possible, therefore the correct selection should make the transfer function

Z(s) or Y (s) proper [68].

A practical implementation of CCVS or VCCS is shown in Figure 2.4 [36, 40]. The device is

capable of ±200 V operation at a maximum DC current of ±30 A. A dSpace 1104 based sys-

tem is used to implement the required impedance Z(s) or admittance Y (s) transfer functions

or filter, as shown in Figure 2.3. Further analysis and more detailed discussions of CCVS or

VCCS can be found in reference [40].

Using synthetic inductors [93], a synthetic admittance circuit [36] or CCVS/VCCS [40],

strictly speaking, will not be “passive” [68], as they will be made of “active” components,

such as opamps, transistors and digital signal processors (DSPs). However, there are clear

advantages in using such techniques. For example, CCVS/VCCS implementation replaces

various virtual circuits such as virtual capacitors and inductors, negative impedance con-

verters and transformers [59]. Additionally, only a single high-voltage opamp is required to

provide close to an ideal implementation of any arbitrary shunt impedance.
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Figure 2.3: The simplified schematic of a differential voltage feedback amplifier (a) and current

feedback amplifier (b). The load impedance ZL(s) represents piezoelectric transducer.
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Figure 2.4: Practical implementation of a voltage amplifier with current instrumentation [36, 40].

2.4 Modelling a Mechanical System

This section will consider a method for modelling the presence of a shunt circuit attached to

a piezoelectric laminate structure, as shown in Figure 2.5. The aim is to dampen vibration

from two external disturbances. The first is a voltage disturbance Va, as shown in Figure 2.5,

and the second is a spatial force disturbance f .

From reference [10, 82], the following relationships are defined for small amplitude vibration:

Gad(s) =
d(s)

Va(s)
=

M
∑

k=1

Fkφk

s2 + 2ζkωks + ω2
k

(2.4)

and

Gvv(s) =
Vp(s)

Vz(s)
=

M
∑

k=1

αk

s2 + 2ζkωks + ω2
k

, (2.5)

where Fk, φk and αk represent the lumped modal and piezoelectric constants applicable

to the kth mode of vibration for some large finite number M . Additionally, Vp(s) is the

induced voltage within the piezoelectric transducer. For ease of modelling, the disturbance

and shunted transducer are physically identical, poled in the same direction and are attached

to the structure in a collocated fashion, hence Gav(s) =
Vp(s)
Va(s) = Gvv(s). In reality, this

assumption is rarely the case and should be disregarded.
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Figure 2.5: General piezoelectric laminated structure excited by a distributed force f(s) and

voltage Va(s) is applied to a disturbance patch. The resulting vibration d(s) is suppressed by the

presence of an electrical impedance Z(s) connected to the piezoelectric transducer.

Modelling of the above transfer functions is usually either analytical, finite element analysis

or system identification.

Analytical modelling requires mathematical models for structural dynamics and piezoelectric

transducers [10, 43, 82]. In this case, the physical properties of the mechanical structure

and the piezoelectric transducer are required. Initially, physical parameters are assumed and

applied to building a model for the system. A set of experimental data is then obtained and

used to optimise the model until it agrees with the data. Sometimes a non-linear optimisation

technique is used to optimise the model parameters [10].

Finite element analysis (FEA) involves cutting a mechanical structure into several discrete

elements or models, and by describing the behavior of each element a model for the overall

system can be formulated. Normally, this technique develops high order models [25, 76]. As

with the analytical modelling, FEA models are commonly tuned to the experimental data

[33].

System identification is normally considered as a “black box” approach whereby experimental

data is fed into an algorithm which outputs a model for the system. This technique does not

require any prior knowledge i.e. does not require any mechanical structure or piezoelectric

transducer parameters. System identification field is very diverse [77, 106]. However, from

22



observations the frequency domain subspace system identification has proven extremely ef-

fective in identifying high order resonant systems [79, 80], as well as for the systems dealt

with in this thesis. Van Overschee and De Moor algorithm [105] will be used throughout the

thesis1. For more information refer to references [79, 80].

2.4.1 Modelling the Presence of Shunt Circuit

The derivation in the following section will reiterate the work presented in the author’s

Masters thesis [10]. For consistency, the same notations used in the Masters thesis will be

applied to this thesis.

Cp

f d

Iz

Vz

Vp

Va Z (s) 

Identical
Piezoelectric
Transducers

(s) 

(s) (s) 

(s) 

(s) (s) 

s 
1

Figure 2.6: A mechanical structure disturbed by an applied actuator voltage Va(s) and force f(s).

Resulting vibration d(s) suppressed by the presence of an elctrical impedance Z(s) connected to

a piezoelectric transducer.

Ohm’s law states, in the Laplace domain, the following relationship between voltage and

current is

Vz(s) = Iz(s)Z(s). (2.6)

Referring to Figure 2.6, by applying Kirchhoff’s voltage law, the following relationship can

1A Matlab implementation of this algorithum can be downloaded from http://routh.newcastle.edu.au
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Figure 2.7: Piezoelectric shunt damping (strain) feedback control problem parameterised by

Z(s).

be obtained

Vz(s) = Vp(s) −
1

Cps
Iz(s), (2.7)

where Cp is the capacitance for the piezoelectric transducer. By substituting (2.6) into (2.7),

the following is obtained

Vz(s) =
Z(s)

1
Cps

+ Z(s)
Vp(s) =

CpsZ(s)

1 + CpsZ(s)
Vp(s). (2.8)

From the principle of superposition [10, 43], the disturbance voltage Va(s) to transducer strain

voltage Vp(s) is

Vp(s) = Gav(s)Va(s) − Gvv(s)Vz(s). (2.9)

By adding (2.8) to (2.9) the following shunted composite system, or closed-loop system, can

be obtained

G̃av ,
Vp(s)

Va(s)
=

Gav(s)

1 + Gvv(s)K(s)
, (2.10)

where the effective controller K(s) is

K(s) =
Z(s)

Z(s) + 1
Cps

=
1

1 + 1
Cps

Y (s)
, (2.11)

and the admittance Y (s) is equivalent to 1
Z(s) . Now Equation (2.10) can be represented as

a collocated feedback control problem where the effective controller is parameterised by the

electrical shunt impedance Z(s) or admittance Y (s), as shown in Figures 2.7 and 2.8.
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Figure 2.8: Piezoelectric shunt damping (strain) feedback control problem parameterised by

Y (s).

Alternatively, the closed-loop transfer function between disturbance voltage Va(s) to displace-

ment d(s) can also be derived in a similar fashion [10],

G̃ad ,
d(s)

Va(s)
=

Gad(s)

1 + Gvv(s)K(s)
. (2.12)

By considering the principle of superposition, the disturbance force f(s) can be included [10],

Vp(s) =
Gav(s)

1 + Gvv(s)K(s)
Va(s) +

Gfv(s)

1 + Gvv(s)K(s)
f(s) (2.13)

and

d(s) =
Gad(s)

1 + Gvv(s)K(s)
Va(s) +

Gfd(s)

1 + Gvv(s)K(s)
f(s), (2.14)

where Gfd(s) = d(s)
f(s) is the transfer function from an applied force f(s) to the displacement

d(s) and Gfv(s) =
Vp(s)
f(s) is the applied force f(s) to the transducer strain voltage Vp(s).

Further analysis and interpretation can be found in references [10, 84].

2.5 Proposed Shunt Controllers

In this section, four new shunt control techniques for piezoelectric shunt damping will be

developed and presented.
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Figure 2.9: Proposed current-flowing multiple mode shunt circuit.

2.5.1 Current-Flowing Shunt Controller

The current-flowing shunt is similar in nature to the current-blocking circuit [113], as de-

scribed in Section 2.2. Instead of preventing the current from flowing at a specific frequency

ωi (i = 1, 2, 3, . . . , n), current flow is allowed. This is achieved by using a series capacitor-

inductor circuit Ci − L̂i, shown in Figure 2.9. The series, Ci − L̂i, is tuned to the structural

resonance frequency ωi. The series capacitor-inductor circuit, Ci − L̂i, appears to be a short-

circuit at ωi and approximately open-circuit for all other frequencies. The shunting branch

L̃i − Cp is also tuned to ωi, when Cp is the capacitance of the piezoelectric transducer.

Therefore, each circuit branch Ci − L̂i − L̃i −Ri is functional at its own frequency ωi, but is

approximately open-circuit at all other frequencies. Notice that some level of interaction be-

tween modes that are closely spaced is expected. However, for modes that are widely spaced,

this interaction will be minimal.

Example: Current-Flowing Shunt Controller for Two Modes

To illustrate the proposed shunt circuit, consider the two mode case shown in Figure 2.10,

at mode frequencies ω1 and ω2. The first branch of the shunt circuit, with shunt induc-

tor L̃1 = 1/(ω2
1Cp) and R1, is inserted with a current-flowing circuit consisting of a series

capacitor-inductor circuit C1 − L̂1, the electrical impedance is designed to approach a short-

circuit at the branch frequency of ω1, as indicated with ω1 in Figure 2.10. This is done

by selecting C1 and L̂1 so that the resonance frequency is at ω1 = 1/
√

C1L̂1, which is a
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fundamental characteristic of any resonant capacitor-inductor circuit. The current-flowing

circuit in the second branch also uses a resonant circuit when the electrical impedance ap-

proaches a short-circuit at the second structural frequency of ω2 by selecting C2 and L̂2,

such as ω2 = 1/
√

C2L̂2. When the two branches are connected together and presented to

the piezoelectric shunting layer terminals, each branch acts independently for its respective

modes. That is, the first branch is designed to introduce damping at ω1 while not disturbing

the second branch that is approximately open-circuit at ω1, i.e. the impedance is very large.

The same reason applies for the second branch.

C1

R 1

L 1

L 1

C 2

R 2

L 2

L 2

Current-Flowing

Shunting Branches

Branches

ω
1

ω
2

Figure 2.10: Proposed two mode current-flowing shunt circuit.

Generalised Current-Flowing Shunt Controller

The generalised case for n structural modes is

L̃1 =
1

ω2
1Cp

, · · · , L̃n =
1

ω2
nCp

, (2.15)

where L̃i is tuned into piezoelectric capacitance Cp. Frequencies ωi are the mode frequencies

to be passively controlled assuming that ω1 < ω2 < . . . < ωn. The relationship for L̂i

current-flowing branches is

L̂1 =
1

ω2
1C1

, · · · , L̂n =
1

ω2
nCn

. (2.16)

By combining the series inductor values together e.g. Li = L̃i + L̂i,

L1 =
Cp + C1

ω2
1C1Cp

, · · · , Ln = L̃n + L̂n =
Cp + Cn

ω2
nCnCp

, (2.17)
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the total impedance for each shunting branch Zi(s) has been simplified. Therefore, the modi-

fied current-flowing shunt, shown in Figure 2.11, has one less passive element in each shunting

branch. The proposed modified controller, shown in Figure 2.11, resembles the circuit of Hol-

lkamp [56]. However, there are significant differences between the two approaches.

One distinction is that the shunt circuit proposed in [56] includes only one resistor-inductor

circuit for the first mode, while in this approach a capacitor-inductor-resistor circuit is used to

shunt each mode. Furthermore, the methodology proposed here for determining the capacitive

and inductive elements is very different to that suggested in [56]. By following the above

procedure, capacitors and inductors for each parallel branch of the circuit can be determined

in a very straightforward manner. This is in contrast to the methodology proposed in [56]

that requires the solution to a non-trivial optimisation problem.

The total shunt branch impedance Zi(s), is

Z1(s) =
s2 + R1

L1
s + 1

L1C1

1
L1

s
, · · · , Zn(s) =

s2 + Rn

Ln
s + 1

LnCn

1
Ln

s
, (2.18)

or the admittance Yi(s) = 1
Zi(s)

is

Y1(s) =
1

L1
s

s2 + R1

L1
s + 1

L1C1

, · · · , Yn(s) =
1

Ln
s

s2 + Rn

Ln
s + 1

LnCn

. (2.19)

By adding the shunt branches together, the total shunt admittance is derived as

Y (s) =
n

∑

i=1

Yi(s) =
n

∑

i=1

1
Li

s

s2 + Ri

Li
s + 1

LiCi

. (2.20)

Now the feedback controller (2.11) can be determined as

K(s) =
1

1 + 1
Cps

Y (s)
. (2.21)
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Using (2.20), it can be shown that the effective feedback controller is

K(s) =
1

1 +
n
∑

i=1

1

LiCp

s2+
Ri
Li

s+ 1

LiCi

(2.22)

or alternatively,

K(s) =

n
∏

i=1

(

s2 + Ri

Li
s + 1

LiCi

)

n
∏

i=1

(

s2 + Ri

Li
s + 1

LiCi

)

+
n
∑

i=1

1
LiCp

n
∏

l=1,l 6=i

(

s2 + Rl

Ll
s + 1

LlCl

)

. (2.23)

Notice that the controller has a highly resonant structure and it applies a high gain at each

target host structure resonance frequency. Viewing the shunted system in this manner has

the advantage that the residual effects of each mode on other modes can be determined

in a straightforward manner. It can be observed that as long as the controlled modes are

reasonably spaced, this “residual effect” will be minimal. However, if two modes are very

close, this effect can not be ignored and may degrade the performance of the shunted system

at those specific resonance frequencies.

2.5.2 Series-Parallel Shunt Controller

In this section, a new multiple mode piezoelectric shunt damping structure is presented.

The series-parallel impedance structure contains significantly smaller inductors than other

resonant shunt techniques [14, 114].

Consider the series-parallel impedance structure shown in Figure 2.12 (a). Each parallel

network Ci −Lhi
−Lbi

−Ri contains two sub-networks, a current-blocking network Ci −Lhi

and a parallel single mode shunt damping network Lbi
− Ri. As in reference [112] for a

specific mode with resonance frequency ωi, both the current-blocking and shunt damping

networks Ci −Lhi
and Lbi

−Cp, are tuned to ωi. Note that Cp is the piezoelectric transducer

capacitance.

The operation is described fairly simply. At a specific structural resonance ωi, the current-

blocking networks when tuned to that specific mode has an extremely large impedance. All

other adjacent current-blocking networks, when tuned to the remaining structural resonance

frequencies, have a low impedance at ωi. Thus, a voltage applied at the terminals results in a

current that flows freely through the detuned low impedance current-blocking networks and

through the shunt damping networks connected in parallel to the current-blocking network
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Figure 2.12: Series-parallel impedance structure (a) and simplified circuit (b).

tuned to ωi. This way the circuit is decoupled so that each damping network Lbi
− Ri − Cp

can be tuned individually to the target resonance frequency. At a structural resonance ωi,

the overall impedance is approximately equivalent to Lbi
− Ri, that is, a series combination

Lbi
with Ri.

In its simplest form, as described above, the series-parallel impedance structure contains

fewer components than traditional current-blocking networks [112]. The circuit is little more

than the parallel dual of so-called current-blocking techniques [14], as described in the pre-

vious section. Benefits arise from a suitable choice in the arbitrary capacitances Ci. The

recommended capacitance value is 10 to 20 times larger than the piezoelectric capacitance.

In this case, the current-blocking inductors will be significantly smaller than the damping

inductors. As shown in Figure 2.12 (b), the circuit can be simplified by combining the parallel

current-blocking and damping inductors.

When the current-blocking and damping inductors are tuned to the resonance frequencies ωi,

i.e.

Lhi
=

1

ω2
i Ci

for all i = {1, 2, 3, ..., n} (2.24)
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and

Lbi
=

1

ω2
i Cp

for all i = {1, 2, 3, ..., n}, (2.25)

the effective inductance resulting from the parallel connection of (2.24) and (2.25) is

Li =

(

Lbi
Lhi

Lbi
+ Lhi

)

for all i = {1, 2, 3, ..., n}. (2.26)

As Ci has been chosen significantly larger than Cp, there is a dramatic reduction in required

inductance value. The impedance of the modified series-parallel controller, as shown in Figure

2.12 (b), is

Z(s) =
n

∑

i=1

1
Ci

s

s2 + 1
RiCi

s + 1
LiCi

. (2.27)

2.5.3 Resonant Shunt Controllers

As shown in Section 2.2, a number of impedance structures have been suggested. This includes

the single-mode shunt damping impedance proposed in [41, 48, 112] and several modifications

of this technique to allow for multi-mode shunt damping [56, 113, 114]. This section proposed

a new class of admittances suitable for multi-mode piezoelectric shunt damping. Furthermore,

stability and robustness properties for this class of admittances were analysed and studied.

In Section 2.4.1, piezoelectric shunt damping is equivalent to a feedback control problem with

a specific feedback structure, as shown in Figures 2.7 and 2.82. This understanding of the

underlying feedback structure can be interpreted as from the existing results in the literature

in a meaningful way. Furthermore, new contributions may be made to the field in the form

of generating new classes of high-performance shunt damping impedance structures.

Notice that in Figure 2.8, the closed-loop transfer function from the disturbance input Va(s)

to d(s) can be written as

G̃ad(s) ,
d(s)

Va(s)
=

Gad(s)

1 + K(s)Gvv(s)
(2.28)

where

K(s) =
1

1 + 1
Cps

Y (s)
. (2.29)

Now the role of the shunting admittance Y (s) is to move the closed-loop poles of the system

deeper into the left half plane, i.e. to add more damping to each mode. Therefore, an effective

2This observation was first made in reference [10].
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admittance structure for this purpose is [84]

Y (s) =
Cps

∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

1 − ∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

, (2.30)

where αi ≥ 0 and di > 0 for i = 1, 2, . . . , N , and

N
∑

i=1

αi = 1. (2.31)

An immediate choice for αi = 1
N

for i = 1, 2, . . . , N . This will ensure that the condition in

(2.31) is satisfied. It is straightforward to verify that for the admittance structure defined in

(2.30), the effective controller expression in (2.29) will be

K(s) = 1 −
N

∑

i=1

αiω
2
i

s2 + 2diωis + ω2
i

. (2.32)

This then can be shown to be equivalent to

K(s) =
N

∑

i=1

αis(s + 2diωi)

s2 + 2diωis + ω2
i

. (2.33)

It should be possible to imagine why this specific structure may be quite effective in re-

ducing unwanted vibrations of the base structure. Flexible structures are inherently highly

resonant systems whose dynamics consist of a large number of very lightly damped modes.

The admittance suggested in (2.30), once shunted to the piezoelectric transducer with the

piezoelectric capacitance of Cp, will result in an equivalent feedback control problem where

the controller K(s) is defined in (2.33). It can be observed that this controller has a highly

resonant structure dictated by the damping factors d1, . . . , dN . The controller applies a high

gain at each specific resonance frequency. This is done by applying a very narrow bandpass

filter around each resonance frequency of the base structure.

To see the connection with earlier work if N = 1, then the controller may be tuned to one

specific resonance frequency, say ω`. In this case, it can be shown that

Y (s) =
ω2

` Cp

s + 2d`ω`

.

Hence, Y (s) effectively represents the series connection of a resistor R = 2d`

ω`Cp
with an in-

ductor L = 1
ω2

`
Cp

shunted across the piezoelectric transducer terminals. This is the original

single-mode shunt damping circuit proposed by Hagood and von Flotow [48]. Based on this

observation, it may be argued that Y (s) in (2.30) effectively generates a phase and gain

relationship around each resonant frequency that is similar to the generated by an inductor-

resistor (L − R) circuit tuned to that specific resonant frequency.
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Figure 2.13: Equivalent system for study of closed-loop stability.

Closed-loop Stability In this section, the stability properties of the proposed shunting

impedance is studied. By inspection, it can be verified that the closed-loop stability of the

shunted system is equivalent to the stability of the feedback connection in Figure 2.13 with

Ĝ(s) = sGvv(s)

=
M
∑

i=1

γis

s2 + 2ζiωis + ω2
i

(2.34)

and

K̂(s) =
N

∑

i=1

αi(s + 2diωi)

s2 + 2diωis + ω2
i

.

The proof of closed-loop stability is rather straightforward and is based on the observation

that K̂(s) is a strictly positive real (SPR) transfer function, i.e. K̂ is stable and K̂(jω) +

K̂(−jω) > 0 for all ω ∈ R, and Ĝ(s) is a positive real (PR) transfer function, i.e. Ĝ is stable

and Ĝ(jω) + Ĝ(−jω) ≥ 0 for all ω ∈ R. The feedback connection of two SISO systems,

where one is a SPR and the other is a PR transfer function, is stable with a guaranteed

gain margin of infinity, refer to Chapter 10 of [70]. Therefore, the admittance suggested in

(2.30) results in a closed-loop system that is constant with favourable stability margins [84].

Alternatively, using the root-loci or Bode diagram to determine the stability for the system

can also be considered. Since, the stability of system has already been proven earlier it is

pointless expanding the stability proof. However, using the root-loci or Bode diagram to

prove the closed-loop stability is open to further examination.

It should be noted that (2.34) with M arbitrarily large, i.e. M À N , is a reasonable finite-

dimensional approximation of (2.5). For further explanation, refer to reference [60]. In

addition, ζi must be positive, i.e. ζi > 0. That is, the mechanical system does not include

negative damping i.e. a self-excited system.
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Properties of the Proposed Admittance and Implementation Issues The ultimate

goal is to implement the admittance Y (s) digitally using the synthetic admittance circuit

proposed in Section 2.3. For this to be achievable in an efficient way, Y (s) must satisfy

a number of conditions. It should be at least proper, and preferably strictly proper with

a bandwidth that is not excessively larger than that of the highest in-bandwidth mode of

the base structure that is to be controlled. In this section, the structure of the proposed

admittance is studied and will show that it satisfies all the above conditions.

The stability of Y (s) is studied first. This can be verified by observation that the Nyquist

plot of
M
∑

i=1

αiω
2
i

s2 + 2diωis + ω2
i

(2.35)

with M À N will never cross the critical point, −1 + j0. This along with the feedback

structure of Y (s) in Equation (2.30), establishes the stability of the admittance Y (s).

Next, the admittance Y (s) can be written as

Y (s) =

∑N
i=1

Cpαiω
2

i s

s2+2diωis+ω2

i
∑N

i=1
αis(s+2diωi)
s2+2diωis+ω2

i

=
H(s)

J(s)
.

Now it can be verified that the numerator transfer function, H(s), is a positive real transfer

function, which means

−π

2
≤ ∠H(s) ≤ π

2
.

Furthermore, it can be verified that

0 < ∠J(s) < π.

The conclusion may be made

−π

2
< ∠Y (s) <

π

2
,

which means that Y (s) is a strictly positive real transfer function, i.e. the Nyquist plot of

Y (s) is confined to the right half of the complex plane. The implication of this observation is

that Y (s) is indeed possible using purely passive circuit components, i.e. resistors, inductors

and capacitors [84]. Such a circuit may be realised by observing that Y (s) can be written as

Y (s) =
Cp

∑N
i=1 αiω

2
i

∏N
`=1, 6̀=i(s

2 + 2d`ω`s + ω2
` )

∑N
i=1 αi(s + 2diωi)

∏N
`=1, 6̀=i(s

2 + 2d`ω`s + ω2
` )

. (2.36)
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Robustness Issues An interesting property of the admittance proposed in (2.30) is its

robustness. To make this clearer, under (2.30) the closed-loop system is stable with a gain

margin of infinity. Therefore, the spill-over effect due to the existence of out-of-bandwidth

modes will not destabilise the closed-loop system. As a matter of fact, the spill-over effect

will be minimal since the admittance, and hence the resulting equivalent controller K(s) in

(2.33), has a highly resonant nature.

The structure of the admittance Y (s) is such that if the resonant frequencies ω1, . . . , ωN

are slightly different from the actual resonance frequencies of the base structure, closed-loop

stability is guaranteed. This is a favourable property as these resonance frequencies are

known to change with environmental conditions and dynamic loading.

A particularly important robustness feature of the proposed admittance structure is that it

maintains closed-loop stability even if the value of the piezoelectric capacitance in (2.30) is

estimated incorrectly. A proof of this claim follows.

Assume that the actual value of the piezoelectric capacitance is Cp, while the estimate of C̄p

is C̄p = ηCp. Therefore, the admittance expression in (2.30) should be modified to

Y (s) =
C̄ps

∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

1 − ∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

.

Arguing along similar lines in Section 2.5.3, the stability of the resulting closed-loop system

is equivalent to the stability of the system Gvv(s) with

Ĝ(s) = sGvv(s)

and

K̂(s) =
1
s

1 + η
s
Ỹ (s)

,

where

Ỹ (s) =
1

Cp
Y (s).

Now, that Y (s) is a strictly positive, real transfer function that has already been established.

Therefore, strict positive realness of Ỹ (s) follows immediately. Thus, it can be proved that

K̂(s) is stable and that K̂(jω) + K̂(−jω) > 0 for all ω ∈ R. So, K̂(s) is itself a strictly

positive real system. Given that Ĝ(s) is a positive real system, the closed-loop system is

stable for any η > 0 [84] and may be concluded. Although the closed-loop system will not be

destabilised, the performance of the system may severely deteriorate as η deviates from one.
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Optimal Tuning of the Admittance The structure of the admittance in (2.30) guar-

antees closed-loop stability of the system. In order to achieve good performance, appropriate

values for the damping parameters d1, d2, . . . , dN need to be determined. This may be done

by seeking a solution to the following optimisation problem:

d∗1, d
∗
2, . . . , d

∗
N = arg min ‖G̃ad(s)‖2. (2.37)

This is a non-convex optimisation problem that could have many local minima. Typically,

a gradient descent technique could be used to solve the problem. In doing so, an initial

starting point would need to be chosen to start the optimisation process. Given that for

all positive d1, d2, . . . , dN the closed-loop system is stable and any positive value may be

considered acceptable. However, considering the structure of the system, it may be possible

to find a set of damping ratios reasonably close to a minima.

The transfer function Gvv(s) in (2.5) is a high order system of very lightly damped resonant

modes. Depending on the geometry of the structure, these modes may be reasonably far

away from one another. Given the highly localised nature of Y (s), it may be a reasonable

assumption to consider the effect of each individual bandpass section of the admittance on

the specific mode of the base structure. Doing so would mean searching for a value of the

damping ratio that would place the closed-loop poles of the system as deep into the left half

of the complex plane as possible. A repeat of this procedure for every single mode that is to

be controlled may result in a good starting point for the optimisation problem (2.37).

Additional Resonant Shunt Controller Another impedance structure that results in

a favorable closed-loop performance can be constructed by choosing the following for an

effective controller: K

K(s) =
N

∑

i=1

αis
2

s2 + 2diωis + ω2
i

, (2.38)

where αi ≥ 0 for i = 1, 2, ..., N and
N

∑

i=1

αi = 1. (2.39)

Also, the admittance transfer function that has to be implemented is

Y (s) =
Cps

∑N
i=1

αi(2diωis+ω2

i )
s2+2diωis+ω2

i

1 − ∑N
i=1

αi(2diωis+ω2

i )
s2+2diωis+ω2

i

=
Cp

∑N
i=1 αi

(

2diωis + ω2
i

)

ΠN
l=1,i6=l

(

s2 + 2dlωls + ω2
l

)

∑N
i=1 (αis) ΠN

l=1,i6=l

(

s2 + 2dlωls + ω2
l

) . (2.40)

36



By using the same techniques illustrated above, similar stability, implementation, robustness

and optimal results can be obtained.

2.5.4 Robust Passive Shunt Controller

In the previous section, Section 2.5.3, piezoelectric shunt damping showed that it can be

viewed as a feedback control problem of a specific structure. Using this underlying structure,

an impedance Y (s) that moves the damped poles of the shunted system deeper into the

left-half plane can be designed, i.e. to add more damping.

Two effective admittances for this purpose were developed, as shown in Section 2.5.3. They

are

Y1(s) =
Cps

∑N
i=1

αiω
2

i

s2+2d̂iω̂is+ω̂2

i

1 − ∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

=
Cp

∑N
i=1

(

αiω
2
i

)

ΠN
l=1,i6=l

(

s2 + 2dlωls + ω2
l

)

∑N
i=1 (s + 2diωi)ΠN

l=1,i6=l

(

s2 + 2dlωls + ω2
l

) (2.41)

and

Y2(s) =
Cps

∑N
i=1

αi(2diωis+ω2

i )
s2+2diωis+ω2

i

1 − ∑N
i=1

αi(2diωis+ω2

i )
s2+2diωis+ω2

i

=
Cp

∑N
i=1 αi

(

2diωis + ω2
i

)

ΠN
l=1,i6=l

(

s2 + 2dlωls + ω2
l

)

∑N
i=1 (αis)ΠN

l=1,i6=l

(

s2 + 2dlωls + ω2
l

) ,

(2.42)

where ωi is the specified frequencies and the damping parameter di must satisfy di > 0 for

i = 1, 2, 3, . . . , N . Also for passivity, the following condition must be satisfied:

N
∑

i=1

αi = 1 and αi > 0. (2.43)

An immediate choice for αi is

αi =
1

N
for i = 1, 2, 3, . . . , N.

It is straightforward to verify that for the impedances Y1(s) and Y2(s), the effective controllers

K(s) in Equation (2.11) will be

K1(s) =
N

∑

i=1

αis (s + 2diωi)

s2 + 2diωis + ω2
i

(2.44)

and

K2(s) =

N
∑

i=1

αis
2

s2 + 2diωis + ω2
i

. (2.45)

37



Normally for the proposed impedances (2.41) and (2.42), the frequencies ω̂i are equal to the

structural resonance frequencies ωi, i.e. ωi = ω̂i. For the proposed robust passive piezoelectric

shunt controller, additional controllers are placed above and below ωi. That is,

ωi = {ω̂i,−M , . . . , ω̂i,−2, ω̂i,−1, ω̂i,0, ω̂i,1, ω̂i,2, . . . , ω̂i,M} iε{1 · · ·N},

where ω̂i,0 is equivalent to the specific frequencies, i.e. ωi = ω̂i,0, assuming that

ω̂i,−M < . . . < ω̂i,−2 < ω̂i,−1 < ω̂i,0 < ω̂i,1 < ω̂i,2 < . . . < ω̂i,M iε{1 · · ·N}

and

ω̂1,x < . . . < ω̂i,xN
x1, . . . , xN ε{−M · · ·M}.

Therefore, the new damping vector is described as

di = {d̂i,−M , . . . , d̂i,−2, d̂i,−1, d̂i,0, d̂i,1, d̂i,2, . . . , d̂i,M} iε{1 · · ·N},

and

{d̂i,−M , . . . , d̂i,−2, d̂i,−1, d̂i,0, d̂i,1, d̂i,2, . . . , d̂i,M} > 0 iε{1 · · ·N}.

The two new impedances have the following structures:

Y1(s) =
Cps

∑N
i=1 Φ1

1 − ∑N
i=1 Φ1

, (2.46)

Φ1 =





−1
∑

j=−M

αi,jω̂
2
i,j

s2 + 2d̂i,jω̂i,js + ω̂2
i,j

+
αi,0ω̂

2
i,0

s2 + 2d̂i,0ω̂i,0s + ω̂2
i,0

+
M
∑

j=1

αi,jω̂
2
i,j

s2 + 2d̂i,jω̂i,js + ω̂2
i,j





and

Y2(s) =
Cps

∑N
i=1 Φ2

1 − ∑N
i=1 Φ2

, (2.47)

Φ2 =





−1
∑

j=−M

αi,j

(

2d̂i,jω̂i,js + ω̂2
i,j

)

s2 + 2d̂i,jω̂i,js + ω̂2
i,j

+
αi,0

(

2d̂i,0ω̂i,0s + ω̂2
i,0

)

s2 + 2d̂i,0ω̂i,0s + ω̂2
i,0

+
M
∑

j=1

αi,j

(

2d̂i,jω̂i,js + ω̂2
i,j

)

s2 + 2d̂i,jω̂i,js + ω̂2
i,j



 ,

where the modified condition
∑N

i=1

∑M
i=−M αi,j = 1 and αi,j > 0 must be satisfied by both

Equations (2.46) and (2.47).

It can be observed that the proposed robust passive piezoelectric shunt controller has the

order 2M + 1 for each ith mode. The overall impedance or controller order is N(2M + 1).

Therefore, the effective controllers K1(s) and/or K2(s) are equivalent to

K1(s) =
N

∑

i=1





−1
∑

j=−M

αi,js
(

s + 2d̂i,jω̂i,j

)

s2 + 2d̂i,jω̂i,js + ω̂2
i,j

+
αi,0s

(

s + 2d̂i,0ω̂i,0

)

s2 + 2d̂i,0ω̂i,0s + ω̂2
i,0

+
M
∑

j=1

αi,js
(

s + 2d̂i,jω̂i,j

)

s2 + 2d̂i,jω̂i,js + ω̂2
i,j





(2.48)
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Figure 2.14: Piezoelectric laminated simply supported beam apparatus [10].

and/or

K2(s) =
N

∑

i=1





−1
∑

j=−M

αi,js
2

s2 + 2d̂i,jω̂i,js + ω̂2
i,j

+
αi,0s

2

s2 + 2d̂i,0ω̂i,0s + ω̂2
i,0

+
M
∑

j=1

αi,js
2

s2 + 2d̂i,jω̂i,js + ω̂2
i,j



 .

(2.49)

2.6 Experimental Verification

In this section, the proposed control schemes will be validated experimentally on three piezo-

electric laminated resonant structures: a simply supported beam, a simply supported plate

and a cantilever beam.

2.6.1 Piezoelectric Experimental Apparatuses

Photographs of the three piezoelectric laminate structures are shown in Figures 2.14, 2.15 and

2.16. For all structures, two piezoelectric patches are bonded to the surface in a collocated

fashion using a strong adhesive material. On each structure, a piezoelectric patch will be

used as an actuator to generate a disturbance, and another as a shunting layer, as shown in

Figure 2.17.

The experimental simply supported beam apparatus, as shown in Figure 2.14, consists of a

uniform aluminium beam with a rectangular cross section. The beam parameters are given
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Figure 2.15: Piezoelectric laminated simply supported plate apparatus.

Figure 2.16: Piezoelectric laminated cantilever apparatus.
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Figure 2.17: Experimental piezoelectric laminated structures: simply supported beam (a), simply

supported plate (b) and cantilever beam (c). Note Va is the applied disturbance actuator voltage

and d is the displacement at some point on the structure.
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in Table 2.1. A pair of identical piezoelectric ceramic patches are attached symmetrically to

either side of the beam structure at 0.05 m from one of the pinned boundary conditions, with

reference to Figure 2.17. The piezoceramic elements used on the experimental structure are

PIC1513 lead-zirconium-titanate (PZT) patches. The physical parameters for the PIC151

piezoelectric ceramic patches are given in Table 2.2. For a detailed description of the simply

supported beam apparatus, please refer to reference [10].

The experimental plate is of uniform thickness and pinned at all edges. Two PIC151 piezo-

electric ceramic patches are attached symmetrically to either side of the plate surface in a

collocated manner, as shown in Figure 2.17. Dimensions of the plate and physical properties

of the piezoelectric layers are summarised in Tables 2.3 and 2.4 respectively. For a more

detailed description of the experimental plate apparatus, please refer to [52].

The cantilever beam apparatus consists of a uniform aluminium bar with a rectangular cross

section, clamped at one end. A small mass M is attached to the free end of the structure.

Two PIC151 piezoelectric ceramic patches are attached to the surface using a strong adhesive

material. Dimensions of the cantilever structure and physical properties of the piezoelectric

layers are summarised in Tables 2.5 and 2.6 respectively.

When observing the dynamics of a structure, it is common practice to consider the transfer

function between the displacement at some point on the structure and the disturbance ac-

tuator voltage applied to the actuating patch Gad(s). Another important transfer function

is the dynamics between the shunting piezoelectric voltage (assuming Z(s) = ∞) and the

actuator voltage. Since the shunting layer voltage and actuating voltage are collocated, as

shown in Figure 2.17, Gvv(s) can be directly measured, i.e. Gvv(s) = Gav(s).

For the resonant structures, the energy of the system needs to be experimentally minimised.

This can be achieved by minimising the transfer function Gad(s), i.e. the disturbance actuator

voltage Va(s) to the displacement at a point on the structure d(s), as this effectively reduces

the vibration.

To verify the presence of an attached piezoelectric shunted transducer, a theoretical model

is needed for the transfer functions Gvv(s) and Gad(s). Therefore, a model for the plant will

consist of one input and two outputs (SIMO system). That is

[

Vp(s)

d(s)

]

= Gp(s) Va(s), (2.50)

3These patches are manufactured by Polytec PI Ceramics.
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Parameter Symbol Unit

Length L 0.6 m

Width wb 0.05 m

Thickness hb 0.003 m

Young’s modulus Eb 65 × 109 N/m2

Mass / unit area ρ 2650 kg/m2

Table 2.1: Simply supported beam parameters.

where the open-loop plant transfer function matrix Gp(s) is

Gp(s) =

[

Gvv(s)

Gad(s)

]

,

or Gp(s) ∈ C
2×1. Note s is equivalent to jω.

Employing a Polytec PSV-300 laser scanning vibrometer and a Hewlett Packard 35670A

spectrum analyser, the experimental transfer functions Gad(s) and Gvv(s) were measured.

The experimental transfer functions for all three piezoelectric laminated structures are shown

in Figures 2.18, 2.19 and 2.20. Using the subspace based system identification technique,

as described in Section 2.4, models were obtained for each experimental apparatus. The

identified model transfer functions are also shown in Figures 2.18, 2.19 and 2.20. Overall,

the identified models were found to be a good representation, in the bandwidth of interest,

for the piezoelectric experimental apparatuses.

2.6.2 Shunt Controllers

In this section, the proposed controller designs can now be experimental validated.

Current-Flowing Shunt Controller

The proposed control scheme will be validated experimentally on two resonant structures;

the simply supported beam and the simply supported plate.
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Parameter Symbol Unit

Location x-direction x1 0.05 m

Length lp 0.0699 m

Thickness hp 0.25 × 10−3 m

Capacitance Cp 105.77 × 10−9 F

Young’s modulus Ep 62 × 109 N/m2

Strain constant d31 −210 × 10−12 m/V

Electromechanical coupling factor k31 0.340

Stress constant / voltage coefficient g31 −11.5 × 10−3 V m/N

Table 2.2: Simply supported beam piezoelectric transducer parameters.

Parameter Symbol Unit

Length Lx 0.8 m

Length Ly 0.6 m

Thickness h 0.004 m

Young’s modulus E 65 × 109 N/m2

Poisson’s ratio ν 0.3

Mass / unit area ρ 10.6 kg/m2

Table 2.3: Simply supported plate parameters.
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Parameter Symbol Unit

Location x-direction x1 0.1536 m

Location y-direction y1 0.1418 m

Length Lpx Lpy 0.0724 m

Thickness hp 0.0025 m

Capacitance Cp 67.9 × 10−9 F

Young’s modulus Ep 62 × 109 N/m2

Poisson’s ratio νp 0.3

Strain constant d31 −320 × 10−12 m/V

Electromechanical coupling factor k31 0.44

Stress constant / voltage coefficient g31 −9.5 × 10−3 V m/N

Table 2.4: Simply supported plate piezoelectric transducer parameters.

Parameter Symbol Unit

Length L 0.450 m

Width w 0.050 m

Thickness h 0.003 m

Young’s modulus E 65 × 109 N/m2

Mass / unit area ρ 7.2 Kg/m2

Mass M 0.2 Kg

Table 2.5: Cantilever beam parameters.

45



Parameter Symbol Unit

Piezoelectric actuator location x1 0.130 m

Piezoelectric shunt location x1 0.130 m

Length lp 0.075 m

Width wp 0.025 m

Thickness hp 0.0025 m

Capacitance Cp 104 × 10−9 F

Young’s modulus Ep 62 × 109 N/m2

Strain constant d31 −320 × 10−12 m/V

Electromechanical coupling factor k31 0.44

Stress constant / voltage coefficient g31 −9.5 × 10−3 V m/N

Table 2.6: Cantilever piezoelectric transducer parameters.
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Figure 2.18: Simply supported beam frequency response of |Gvv(s)| (a) and |Gad(s)|(b), for

the piezoelectric laminated simply supported beam structure. Experimental data (· · · ) and model

obtained using subspace based system identification (—).
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Figure 2.19: Frequency response of |Gvv(s)| (a) and |Gad(s)| (b), for piezoelectric laminated

plate bounded structure. Experimental data (· · · ) and model obtained using subspace based

system identification (—).
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Figure 2.20: Frequency response of |Gvv(s)| (a) and |Gad(s)| (b). Experimental data (· · · ) and

identified model (—).
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Mode Value (Hz)

ω2 76

ω3 173

ω4 306

ω5 472

Table 2.7: Experimental resonant frequencies for the simply supported beam.

Simply Supported Beam From Figure 2.18, the resonant modes of the laminated struc-

ture can be obtained. The resonance frequencies for the structure are shown in Table 2.7.

The 2nd, 3rd, 4th and 5th structural modes were chosen due to their highly resonant nature.

The 1st mode was neglected due to the reduced control authority.

Assuming the capacitance values C2 ,C3, C4 and C5 to be 10 nF and the experimentally

measured piezoelectric shunt capacitance Cp is 105.77 nF , the required inductance values

can be calculated using Equation (2.17), as shown in Table 2.8.

In order to find the appropriate shunt resistance Ri, an optimisation approach can be used.

An optimisation technique was proposed in [12], where the H2 norm of the controlled system

is minimised. Optimal shunt resistance values obtained using this optimisation technique are

displayed in Table 2.7.

Simulated results for |Gad(s)| and
∣

∣

∣
G̃ad(s)

∣

∣

∣
, the shunted transfer function from the distur-

bance voltage to displacement, show that the resonance amplitudes have been considerably

dampened, as shown in Figure 2.21. Table 2.9 summarises the simulated amplitude reductions

for the 2nd, 3rd, 4th and 5th modes.

Using a synthetic impedance, as described in Section 2.3, with the required current-flowing

shunt impedance, the frequency response of the shunted structure can be measured using

the laser scanning vibrometer. Figure 2.22 shows the experimentally measured displacement

responses for |Gad(s)| and
∣

∣

∣
G̃ad(s)

∣

∣

∣
. The experimental resonant amplitudes were successfully

reduced, as summarised in Table 2.9.

Simply Supported Plate Considering Figure 2.19, the resonance frequencies of the simply

supported plate structure can be obtained, as shown in Table 2.10. The 1st, 2nd, 3rd, 5th
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Symbol Unit (H)

L2 480.0

L3 92.6

L4 29.6

L5 12.4

Symbol Unit (Ω)

R2 1423

R3 1212

R4 913

R5 798

Table 2.8: Circuit parameters for the simply supported beam.
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Figure 2.21: Simulated beam frequency response. |Gad(s)| undamped response (· · · ) and
∣

∣

∣G̃ad(s)
∣

∣

∣ damped response (—).

Mode Simulated (dB) Experimental (dB)

2 14.5 13.5

3 8.2 7.8

4 14.1 13.8

5 16.4 15.8

Table 2.9: Amplitude reduction for the simply supported beam.
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Figure 2.22: Experimental beam frequency response. |Gad(s)| undamped response (· · · ) and
∣

∣

∣
G̃ad(s)

∣

∣

∣
damped response (—).

and 6th structural modes were chosen due to their high resonant amplitudes. The 4th mode

was neglected due to the reduced control authority and its proximity to the 5th mode.

Setting C1, C2 ,C3, C5 and C6 to be 7 nF , and Cp equal to 67.9 nF , the required inductance

values can be calculated, as shown in Table 2.11. The already mentioned H2 norm optimisa-

tion strategy is employed to determine the required resistance values which are tabulated in

Table 2.11.

Simulated results for |Gad(s)| and
∣

∣

∣
G̃ad(s)

∣

∣

∣
show that the structural amplitudes of the resonant

structure have been dampened, as shown in Figure 2.23 and Table 2.12.

Using the synthetic impedance, as described in Section 2.3, and the laser scanning vibrom-

eter, |Gad(s)| and
∣

∣

∣
G̃ad(s)

∣

∣

∣
can be measured. The frequency response for the experimental

undamped and damped systems are shown in Figure 2.24. Experimental results, shown in

Figure 2.24, demonstrate that the structural modes of the bounded structure have been

considerably damped. The experimental resonant amplitudes were successfully reduced, as

shown in Table 2.12.
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Mode Unit (Hz)

ω1 44.85

ω2 90.2

ω3 124.2

ω4 161.6

ω5 167.6

ω6 237.2

Table 2.10: Experimental resonant frequencies for the plate bounded structure.

Symbol Unit (H)

L1 1986.3

L2 491.1

L3 259.2

L5 142.2

L6 71.1

Symbol Unit (Ω)

R1 2498.2

R2 1858.3

R3 1272.6

R5 1641.5

R6 1400.1

Table 2.11: Circuit parameters for the plate bounded structure.
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Figure 2.23: Simulated plate frequency response. |Gad(s)| undamped response (· · · ) and
∣

∣

∣G̃ad(s)
∣

∣

∣ damped response (—).
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Figure 2.24: Experimental plate frequency response. |Gad(s)| undamped response (· · · ) and
∣

∣

∣G̃ad(s)
∣

∣

∣ damped response (—).
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Mode Simulated (dB) Experimental (dB)

1 3.2 3.8

2 10.9 10.1

3 13.2 12.8

5 13.9 13.2

6 15.8 14.7

Table 2.12: Amplitude reduction for the plate bounded structure.

Series-Parallel Shunt Controller

A series-parallel impedance structure was designed to damp the 1st, 2nd and 3rd modes of

the experimental cantilever apparatus, as described in Section 2.6.1, that is the 7.769, 60.14

and 181.3 Hz respectively. A summary of the circuit parameters is provided in Table 2.13.

In order to determine the appropriate resistance Rn, the H2 norm of the G̃ad(s) could be

minimized [12]. Using the optimisation strategy, as suggested by Behrens et al. [12], the

optimal resistor values were found to be as tabulated in Table 2.13.

To implement the required shunt impedance, the synthetic impedance circuit (2.27), as ex-

plained in Section 2.3, was used. The open-loop Gad(s) and closed-loop G̃ad(s) transfer

functions, shown in Figures 2.25 and 2.26 respectively, were measured to gauge vibration

damping performance. A good correlation was observed between simulated and experimental

results. Peak amplitudes reduction of the 1st, 2nd and 3rd modes are summarised in Ta-

ble 2.14. Therefore, the proposed piezoelectric shunt is an acceptable method for increasing

mechanical damping of highly resonant structures.

Resonant Shunt Controllers

In this section, resonant shunt controllers will be applied to two flexible structures; the

piezoelectric laminate beam and the piezoelectric laminate plate, as described in Section

2.6.1.
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Symbol Unit (H)

L1 246.29

L2 4.11

L3 0.45

Symbol Unit (µF )

C1 1.6

C2 1.6

C3 1.6

Symbol Unit (kΩ)

R1 800

R2 150

R3 36

Table 2.13: Series-parallel shunt circuit parameters.
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Figure 2.25: Simulated frequency response of |Gad(s)| as (· · · ) and
∣

∣

∣G̃ad(s)
∣

∣

∣ as (—).

Mode Simulation (dB) Experimental (dB)

1 8.1 10.2

2 13.2 11.3

3 11.2 13.1

Table 2.14: Amplitude reduction for the cantilever structure.
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Figure 2.26: Experimental frequency response of |Gad(s)| as (· · · ) and
∣

∣

∣
G̃ad(s)

∣

∣

∣
as (—).

The first four modes of the beam and the first six modes of the plate are to be controlled by

a shunt impedance Y (s) given in Equation (2.30). Using the procedure explained in Section

2.5.3, and the identified models, an optimal set of damping ratios for Y (s) was determined for

each structure. The admittances were digitally implemented using the synthetic admittance

circuit described in Section 2.3 and then applied to the shunt transducers. A comparison of

the experimental undamped and damped experimental responses for |Gad(s)| are shown in

Figures 2.27 and 2.29. The experimental resonance magnitudes were successfully reduced,

as summarised in Table 2.15. Figure 2.28 shows the simulated closed-loop and open-loop

poles. Figure 2.28 shows that the closed-loop poles have been pushed further to the left on

the real-imaginary plane.

Robust Passive Shunt Controller

In the following section, both a single mode and multiple mode robust shunt controller are

considered. Simulations are carried out for both cases. Each is then verified experimentally

on the piezoelectric laminated plate, as described in Section 2.6.1.
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Figure 2.27: Experimental beam undamped |Gad(s)| as (· · · ) and damped
∣
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G̃ad(s)
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as (—)

magnitude response.
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Figure 2.28: Simulated open-loop (©) and closed-loop (×) poles of the piezoelectric laminated

beam.
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Figure 2.29: Experimental plate undamped |Gad(s)| as (· · · ) and damped
∣

∣

∣
G̃ad(s)

∣

∣

∣
as (—)

magnitude response.

Mode Beam (dB) Plate (dB)

1 2.0 2.5

2 16.2 13.5

3 19.9 11.0

4 24.1 −
5 − 12.9

6 − 14.8

Table 2.15: Summary of experimental amplitude reduction for both beam and plate structures.
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Single Mode Robust Shunt Controller For the single mode case, damping the second

mode of the piezoelectric laminated plate structure is considered. In Figure 2.30 (a), a single

mode controller is applied to ω2, or alternatively ω̂2,0, as described in Moheimani et al. [84].

Next, two additional controllers are applied to the side lobes ω̂2,−1 and ω̂2,1, as shown in

Figures 2.30 (b) and (c). The impedance required to damp the second mode is

Z1(s) =
1 − β2

Cpsβ2
, (2.51)

where

β2 =
α2,−1ω̂

2
2,−1

s2 + 2d̂2,−1ω̂2,−1s + ω̂2
2,−1

+
α2,0ω̂

2
2,0

s2 + 2d̂2,0ω̂2,0s + ω̂2
2,0

+
α2,1ω̂

2
2,1

s2 + 2d̂2,1ω̂2,1s + ω̂2
2,1

.

Note that α2,−1 = α2,0 = α2,1 = 1
3 and the chosen circuit parameters are tabulated in Table

2.16.

In order to achieve the desired performance, appropriate values for the damping parameters

d̂2,−1, d̂2,0 and d̂2,1 need to be determined. The following optimization problem for the

damped system can be solved:

D∗ = arg min
D>0

∥

∥

∥G̃ad(s)
∥

∥

∥

2
, (2.52)

where D∗ = {d̂2,−1, d̂2,0, d̂2,1}. The above optimisation problem minimises the H2 norm of

the damped transfer function from input disturbance voltage Va(s), to the displacement at a

point on the structure d(s). The optimisation problem was solved from a number of initial

guesses, and a solution was found; d̂2,−1 = 0.0110, d̂2,0 = 0.0101 and d̂2,1 = 0.0098.

Simulated results for |Gad(s)| and
∣

∣

∣
G̃ad(s)

∣

∣

∣
show that the peak amplitude has been consider-

ably reduced, as shown in Figure 2.30 (c).

To validate the proposed multiple mode robust shunt controller, the above impedance (2.51)

and parameters listed in Table 2.16 were applied to the plate structure using the synthetic

impedance as described in Section 2.3. When fine-tuning the proposed impedance parameters,

they were found to be very sensitive, making the tuning process very time-consuming.

From Figure 2.31, the proposed single mode robust shunt controller experimentally agrees

with simulated results.

Aside, it should be noted that the proposed robust shunt controller can be immune to vari-

ations in structural dynamics. This contrasts to previous passive shunt techniques [48, 50,
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Figure 2.30: Simulated undamped |Gad(s)| (· · · ) and damped response
∣

∣

∣G̃ad(s)
∣

∣

∣ (—). Subfigure

(a) original single mode controller is applied to ω̂2,0, (b) second controller is applied to ω̂2,−1 and

(c) third controller is applied to ω̂2,1.

112, 113] which are generally sensitive to variations in the structural frequencies as verified

by shifting the simulated resonance frequencies ±1 Hz from their original values. Simulated

results in Figure 2.32, employing the impedance (2.51), show that the performance of the

system is not severely deteriorated by disturbing the resonance frequencies.

Multiple Mode Robust Shunt Controller For the multiple mode case, damping the

2nd and 3rd structural modes are considered, i.e. ω2 = 83.68 Hz and ω3 = 118.4 Hz. Using

the same procedure as suggested in Section 2.6.2, three additional controllers will be applied

to the 3rd mode. The the following impedance is required:

Z1(s) =
1 − β23

Cpsβ23
, (2.53)

where

β23 =
α2,−1ω̂

2
2,−1

s2 + 2d̂2,−1ω̂2,−1s + ω̂2
2,−1

+
α2,0ω̂

2
2,0

s2 + 2d̂2,0ω̂2,0s + ω̂2
2,0

+
α2,1ω̂

2
2,1

s2 + 2d̂2,1ω̂2,1s + ω̂2
2,1

+ · · ·

α3,−1ω̂
2
3,−1

s2 + 2d̂3,−1ω̂3,−1s + ω̂2
3,−1

+
α3,0ω̂

2
3,0

s2 + 2d̂3,0ω̂3,0s + ω̂2
3,0

+
α3,1ω̂

2
3,1

s2 + 2d̂3,1ω̂3,1s + ω̂2
3,1

.
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Parameters Simulated Unit (Hz) Experimental Unit (Hz)

ω̂2,−1 82.28 82.92

ω̂2,0 83.68 83.58

ω̂2,1 85.21 85.51

Parameters Simulated Unit Experimental Unit

d̂2,−1 0.0110 0.0150

d̂2,0 0.0101 0.00564

d̂2,1 0.0098 0.00245

Table 2.16: Single mode circuit parameters for the plate bounded structure.
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Figure 2.31: Subfigure simulated results (a) and experimental results (b). Undamped |Gad(s)|
(· · · ) and damped response

∣

∣

∣
G̃ad(s)

∣

∣

∣
(—).
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Figure 2.32: Simulated response original system (a), poles moved −1 Hz from the original

system (b), and poles moved +1 Hz from the original system (c). Undamped system |Gad(s)|
(· · · ) from the original single mode controller as described in Moheimani et al. [84] (- - -) and

proposed robust shunt controller (—).
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Parameters Simulated Unit (Hz) Experimental Unit (Hz)

ω̂2,−1 82.2 81.95

ω̂2,0 83.4 83.27

ω̂2,1 84.6 84.09

ω̂3,−1 117.0 116.12

ω̂3,0 118.4 118.03

ω̂3,1 119.6 119.55

Parameters Simulated Unit Experimental Unit

d̂2,−1 0.0091 0.00458

d̂2,0 0.0084 0.00374

d̂2,1 0.0079 0.00123

d̂3,−1 0.0074 0.00515

d̂3,0 0.0069 0.00864

d̂3,1 0.0062 0.00451

Table 2.17: Multiple mode circuit parameters for the plate bounded structure.

Note
∑3

i=2

∑3
i=−3 αi,j = 1 for αi,j > 0, and α2,−1 = α2,0 = α2,1 = α3,−1 = α3,0 = α3,1 = 1

6 .

Simulated results for the multiple mode robust shunt controller, undamped |Gad(s)| and

damped
∣

∣

∣
G̃ad(s)

∣

∣

∣
response, show that the structural amplitude has been considerably reduced,

as shown in Figure 2.33. For this case, three individual controllers were applied to the 2nd and

3rd modes. Note that more then three additional controllers were applied to each individual

mode.

Using the synthetic impedance, as described in Section 2.3, and the circuit parameters listed

in Table 2.17, the impedance (2.53) was applied experimentally to the plate structure. From

Figure 2.34, an amplitude reduction of approximately 16 dB for the 2nd and 3rd modes was

observed.

From simulated and experimental results, the proposed multiple mode robust shunt controller

was developed as an effective method for shunt damping.
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2.7 Discussions

At the beginning of the chapter, the present piezoelectric shunt damping techniques are briefly

reviewed. This includes linear and non-linear techniques, and the associated problems with

these techniques. Passive piezoelectric shunt damping circuits provide guaranteed stability,

reasonable performance and are simple to design. However, dealing with low frequency

modes or transducers with small capacitance, shunt impedances may require inductance

values of greater than 100 Henrys which is physically impossible to build. To overcome these

physical limitations, virtual inductors [93] were considered but made the design too complex

when numerous inductors were required, as in multi-mode shunt impedances. The synthetic

admittance circuit [36] or CCVS/VCCS [40] was reviewed as a method for implementing an

arbitrary shunt impedance circuit [37].

After the reviewing the present shunt damping research, four novel shunt controllers were

developed, examined and verified. They were the current-flowing shunt controller, series-

parallel shunt controller, resonant shunt controllers and robust passive shunt controller.

The current-flowing shunt controller has been introduced as an alternative method for re-

ducing structural vibrations. While achieving similar damping performance, it has a number

of advantages compared to other passive shunt circuits [56, 113, 114]. It is simple (requires

less resistors, capacitors and inductors or virtual inductors [93]), mode dominant (capable of

damping more dominate or neglecting less dominant modes), multi-mode (can damp multiple

modes using a single piezoelectric transducer) and passive (dissipative and guaranteed to be

stable). The current-flowing controller has been theoretically and experimentally verified.

Overall, the proposed theoretical predictions agree with experimental results.

The series-parallel shunt controller has been introduced as an alternative piezoelectric shunt

damping technique for reducing the vibration of multiple structural modes. While achiev-

ing comparable performance to other multiple-mode shunting schemes [14, 56, 113, 114],

the series-parallel impedance structure has one major advantage; smaller inductor values.

The concept presented has been experimentally verified with promising results. In general,

theoretical predictions have agreed with experimental results.

Resonant shunt controllers view piezoelectric shunt damping as a feedback control problem

where the effective controller is parameterised by the impedance. In this section, a new

field of shunt controllers was introduced which can be easily tuned to the resonate frequency

of the structure. Additionally, these controllers were found to be passive and robust. The

proposed controllers were applied to two experimental apparatuses. From observations of the
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theoretical and experimental data, the proposed controller was successful.

The robust passive shunt controller was then introduced as a variation of the previous tech-

nique to overcome the problems associated with environment changes of the resonate peak.

Again, the effect of the robust passive shunt controller was studied theoretically and exper-

imentally on a piezoelectric laminated plate structure. While achieving comparable perfor-

mance to other passive control schemes [56, 113, 114], the proposed robust passive shunt

controller has one major advantage. It is broadband over a desired bandwidth. Preliminary

results show that the proposed technique is less susceptible to environmental changes when

compared to other techniques. While it may be more difficult to initially tune the controller

parameters, it is a valuable method for damping structural modes.

From experimental observation, as shown in Figure 2.29, the proposed impedances are very

effective in reducing vibration of the structures. However, the performance for the first mode

is very limited, and can be attributed to the location of the piezoelectric shunt transducers

on the beam and plate structures. Determining the appropriate transducer location depends

on the maximum mode strain for the structure. This requires theoretical modelling and

practical experience to determine the position. Therefore, selection of the optimal location

for the transducers should improve the damping performance. Refer to reference [52] for more

detail.

All of the proposed shunt controllers provided comparable levels of induced damping, both

theoretically and experimentally. The robust passive shunt controller is considered to be

least preferred due to the difficulty in tuning the controller parameters. The current-flowing

and series-parallel shunt controllers provide easier tuning than the previous techniques and

perform equally as well because of their circuit duality, i.e. Norton’s and Thevenin’s equiv-

alence [59]. The resonant shunt controller proved to be the most favourable due to the ease

of tuning controller parameters.

The proceeding controllers are demonstrated on experimentally ideal structures which are

highly resonant and have ideal boundary conditions. The experimentally ideal structures

were chosen for ease of modelling and controller design. In most practical applications, the

highly resonant modes will be naturally damped attributed to their irregular shape and

diverse boundary conditions. Applying the proposed controllers to more realistic structures

would provide a proper evaluation of their damping potential.

Another important issue not raised is this chapter is performance sensitivity. Passive shunt

control performance is sensitive to structural resonance frequency and transducer dynamic
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changes, which is due to operating and environmental conditions. One method to overcome

this sensitivity is to adaptive the shunt controllers to the changing conditions. Such adaptive

techniques have proven to be very successful and can be found in references [38, 57, 89].

Overall, this chapter has been successful because four new shunt controllers were evaluated

and provided outcomes that expand opportunities for further research and development.
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Chapter 3

Multivariable Piezoelectric Shunt

Control

This chapter is concerned with the problem of multi-mode shunt damping of structural vi-

brations using several piezoelectric transducers. It will show that there is a multivariable

feedback control problem in the impedance, or alternatively the admittance of the electrical

shunt, which constitutes the feedback controller.

3.1 Dynamics of a Multivariable System

Consider a flexible structure with m piezoelectric patches bonded to either side in a collo-

cated pattern. Assume that the piezoelectric transducers on one side are used to disturb the

structure, while those on the other side of the structure are shunted to an impedance. The

impedance is to be designed in a way that the unwanted structural vibrations are minimised.

The disturbances acting on the structure can take different forms. Nevertheless, the method-

ology developed below is general enough to apply to other cases. This point will be further

clarified in later sections.

In Figure 3.1, a schematic of this system is depicted and the equivalent electrical circuit of the

shunted piezoelectric transducers. In this section the dynamics of the multivariable shunted

system is derived.
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then

Vz(s) = Z(s)Iz(s). (3.1)

Furthermore, writing Kirchhoff’s voltage law around the kth loop obtains

vzk
= vpk

− 1

cpk
s
ik,

which implies

Vz(s) = Vp(s) −
1

s
ΛIz(s), (3.2)

where

Λ = diag

(

1

cp1

,
1

cp2

, . . . ,
1

cpm

)

(3.3)

and diag(α1, α2, . . . , αm) represents a matrix with diagonal entries α1, α2, . . . , αm and all

other entries are zeros.

To capture the total effect of the disturbance voltages as well as the effect of the electric

shunt on the structure, this may be written as, [48],

Vp(s) = Gvv(s)Vin(s) − Gvv(s)Vz(s). (3.4)

Here Gvv(s) is the multivariable collocated transfer function matrix of the system, i.e.

Gvv(s) =
M
∑

k=1

Ψk

s2 + 2ζkωks + ω2
k

, (3.5)

where resonance frequencies are ordered such that ω1 ≤ ω2 ≤ . . . ≤ ωM and M can be an

arbitrarily large number. Furthermore, due to the fact that Gvv(s) is a collocated transfer

function matrix, the m × m matrix Ψk must be a positive semi-definite matrix [52]. That is

Ψk = Ψ′
k ≥ 0 for all k. (3.6)

It should be pointed out that if the Equation (3.5) is obtained by employing a procedure

such as modal analysis [82], it would be expected to have M −→ ∞. However, choosing a

very large number for M is quite acceptable, as pointed out in [60] allows the use of finite-

dimensional techniques in analysing the dynamics of the system. Models of the form (3.5)
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Figure 3.2: Feedback structure associated with the piezoelectric shunt damping problem.

can be obtained using a variety of techniques; modal analysis if the system is simple with well

defined boundary conditions or finite element modelling for more complicated structures. An

alternative approach is to employ frequency domain identification techniques [81] to identify a

model for the system. Frequency domain subspace identification has proved to be an efficient

method for identifying highly resonant systems of high orders [80].

Next, Equations (3.1), (3.2) and (3.4) are combined to obtain

Vp(s) =

[

I + Gvv(s)Z(s)

(

Z(s) +
1

s
Λ

)−1
]−1

Gvv(s)Vin(s). (3.7)

From Equation (3.7), it can be inferred that the transfer function matrix relating Vin(s) to

Vp(s) is the feedback connection of Gvv(s) with

K(s) = Z(s)

(

Z(s) +
1

s
Λ

)−1

. (3.8)

This is an interesting observation as it is then possible to employ systems theoretic tools

in analysing dynamics and stability of multivariable shunt-damped systems. The feedback

control problem associated with (3.7) is depicted in Figure 3.2. Note that the inner feedback

loop represents the effective controller K(s) in Equation (3.8). Observe that the purpose of

the system is to regulate vp in the presence of disturbance Vin. The signal Vp, however, is

not directly measurable. Therefore, notice that this is a very sophisticated form of a cascade

feedback control structure, as shown in Section 6.4 of [86].

The above system is mainly used in laboratory experiments. Experimental results in this

chapter are obtained from a simply supported beam with two pairs of collocated piezoelectric

transducers, as shown below in Section 3.4. In a more realistic setting, the disturbances acting

on the structure have a different nature. For example, they may be point forces, moments or
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problem.

a distributed force. In this situation Equation (3.7) can be modified to

Vp(s) = Gvv(s)Vin(s) − Gvw(s)W (s), (3.9)

where Gvw(s) is the unshunted transfer function from the disturbance vector, W (s) to Vp(s).

An implication of Equation (3.9) is that the shunted structural dynamics will have to be

revised as

Vp(s) =

[

I + Gvv(s)Z(s)

(

Z(s) +
1

s
Λ

)−1
]−1

Gvw(s)W (s), (3.10)

where Gvw(s) is the unshunted transfer function from the disturbance vector, W (s) to Vp(s).

The transfer function Gvw(s) depends solely on the nature as well as the spatial coordinates of

the disturbance signal w. Nonetheless, due to the common pole property of flexible structures,

Gvw(s) and Gvv(s) will have identical poles. The zeros of the two transfer functions, however,

could be quite different.

Observe that although the nature of the disturbance has changed, stability of the shunted

system is still dictated by the feedback connection of Gvv(s) and K(s) in (3.8). Furthermore,

it is noted that under these circumstances the regulator problem depicted in Figure 3.2 should

be modified to that shown in Figure 3.3.

3.2 Stability of the Multivariable Shunted System

A set of conditions regarding the guaranteed stability of the closed-loop system is depicted

in Figure 3.3 and derived in this section [85]. Instead of considering the shunting impedance

71



Z(s) as the controller, the closed-loop stability of the system is studied in terms of the

shunted admittance Y (s) = Z(s)−1, noting that the closed-loop transfer function in (3.10)

can be rewritten as

Vp(s) =

[

I + Gvv(s)

(

I +
1

s
ΛY (s)

)−1
]−1

Gvw(s) W (s). (3.11)

The regulator problem associated with this system is depicted in Figure 3.4. A parameteri-

sation of stabilising controllers for the system in (3.11) is introduced next.

Considering the structure of the feedback system, the Youla parameterisation of all stabilising

controllers for the inner feedback loop can be written as

Y (s) = (I − Q(s)Λ/s)−1 Q(s).

Although the inner loop contains an integrator, the parameterisation for a stable plant can

be used as long as Q(s) satisfies a number of conditions. Q(s) must be stable, proper and

have a transmission zero at the origin. Furthermore, I − Q(s)Λ/s must have a transmission

zero at s = 0. These conditions can be enforced by choosing

Q(s) = H(s)Λ−1s,

where H(s) is stable, strictly proper and I − H(s) has a zero at the origin, i.e.

I − H(s) = sJ(s).

This choice for Q(s) results in a closed-loop system with the transfer function matrix

[I + s Gvv(s)J(s)] Gvw(s). (3.12)

It is now possible to find closed-loop stability conditions in terms of J(s) as the stability of

(3.12) is equivalent to that of the system depicted in Figure 3.5.

Next, proof is given that the closed-loop system will be stable as long as J(s) is a strictly

positive real (SPR) transfer function matrix. The following two definitions and the subsequent

theorem due to reference [66] are needed in the proof.

Definition 1 A m × m rational matrix G(s) is said to be positive real (PR) if

1. All elements of G(s) are analytic in Re(s) > 0.

2. G(s) + G∗(s) ≥ 0 in Re(s) > 0 or equivalently
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(a) Poles on the imaginary axis are simple and have nonnegative residues, and

(b) G(jω) + G∗(jω) ≥ 0 for ω ∈ (−∞,∞).

Definition 2 A m × m stable rational matrix G(s) is said to be strictly positive real in the

weak sense (WSPR) if

G(jω) + G∗(jω) > 0 for ω ∈ (−∞,∞).

The following theorem is Corollary 1.1 of [66]:

Theorem 3 The negative feedback connection of a PR system with a WSPR controller is

stable.

It should be pointed out that there are a number of definitions in the literature for strictly

positive real (SPR) systems. For a review of this, refer to references [66, 109]. For almost all

such definitions, a similar result to that of Theorem 3 would be expected, i.e. the negative

feedback connection of a PR system with a SPR controller is stable. For the problem at

hand, Definition 2 is the most relevant.

Now, assuming

G̃vv(s) = s Gvv(s) (3.13)

is a positive real transfer function matrix, it can be noticed from (3.13) and (3.5) that all

of the poles of G̃vv(s) are in the left half of the complex plane, hence the system is stable.

Furthermore, the system has no poles on the jω axis. To prove positive realness of G̃vv(s),

establish that G̃vv(jω) + G̃∗
vv(jω) ≥ 0 is needed for all ω ∈ (−∞,∞) [85], that is

G̃vv(jω) + G̃∗
vv(jω) =

N
∑

k=1

{

jωΨk

ω2
k − ω2 + j2ζkωkω

+
−jωΨk

ω2
k − ω2 + −j2ζkωkω

}

=
N

∑

k=1

4ζkωkω
2Ψk

(ω2
k − ω2)2 + (2ζkωkω)2

≥ 0 for all ω ∈ (−∞,∞),

where the last inequality follows from Equation (3.6).

An implication of the above analysis is that to guarantee the closed-loop stability of the

system, it would sufficient to choose an admittance

Y (s) = J(s)−1 (I − s J(s)) Λ−1

with J(s) a WSPR and strictly proper transfer function matrix.
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3.3 Propose Decentralised Shunt Controllers

The observation made in the previous section prepares for the design impedance structures

that guarantee closed-loop stability of the shunted system. This section introduces two spe-

cific decentralised structures that enforce the above conditions. Furthermore, these decen-

tralised impedances result in effective wideband reduction of vibrations of the base structure.

These admittances, from Section 2.5.3, are constructed starting from

Ja(s) =

N
∑

i=1

diag

(

α1i(s + 2d1iωi)

s2 + 2d1iωis + ω2
i

,
α2i(s + 2d2iωi)

s2 + 2d2iωis + ω2
i

, . . . ,
αmi(s + 2dmiωi)

s2 + 2dmiωis + ω2
i

)

(3.14)

and

Jb(s) =
N

∑

i=1

diag

(

α1is

s2 + 2d1iωis + ω2
i

,
α2is

s2 + 2d2iωis + ω2
i

, . . . ,
αmis

s2 + 2dmiωis + ω2
i

)

, (3.15)

where, in both cases,

αqi ≥ 0, i = 1, 2 . . . , N q = 1, 2, . . . , m (3.16)

and
N

∑

i=1

αqi = 1, q = 1, 2, . . . , m. (3.17)

It can be verified that both Ja(s) and Jb(s) are strictly proper WSPR systems. Hence, the

resulting admittances will guarantee closed-loop stability of the system.

Corresponding to Ja(s) and Jb(s), the expressions for Ya(s) and Yb(s) can be determined as

Ya(s) = diag





∑N
i=1

α1iω
2

i

s2+2d1iωis+ω2

i

1 − ∑N
i=1

α1iω
2

i

s2+2d1iωis+ω2

i

, . . . ,

∑N
i=1

αmiω
2

i

s2+2dmiωis+ω2

i

1 − ∑N
i=1

αmiω
2

i

s2+2dmiωis+ω2

i



Λ−1s (3.18)

and

Yb(s) = diag





∑N
i=1

α1i(2d1iωis+ω2

i )

s2+2d1iωis+ω2

i

1 − ∑N
i=1

α1i(2d1iωis+ω2

i )

s2+2d1iωis+ω2

i

, . . . ,

∑N
i=1

αmi(2dmiωis+ω2

i )

s2+2dmiωis+ω2

i

1 − ∑N
i=1

αmi(2dmiωis+ω2

i )

s2+2dmiωis+ω2

i



 Λ−1s. (3.19)

One of the interesting properties of the above admittance transfer functions is that in a

specific bandwidth, the option of choosing to control only those modes that are of importance

is available. This is reflected in the constraint on parameters αqi in (3.16). This is in contrast
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to the other control design such as LQG and H∞, where the controller tends to have equal

dimensions to that of the system that is being controlled.

A further property of the controllers Ya and Yb is that in the presence of out of bandwidth

modes of the base structure, they do not cause instabilities. The spill-over effect [8, 9]

is a serious cause of concern in control design for flexible structures. Often a feedback

controller is designed using a model of the structure that contains a limited number of modes.

Once the controller is implemented on the full order system, the presence of uncontrolled

high frequency modes may destabilise the closed-loop system or severely deteriorate the

performance. Considering the discussion in Section 3.2, note that such a problem can not

happen here.

Now it is straightforward but tedious, to verify that both Ya(s) and Yb(s) are strictly positive

real transfer functions. They can be realised by passive circuit components, i.e. resistors,

inductors and capacitors. Given that both Ya(s) and Yb(s) have decentralised structures,

effectively each piezoelectric transducer is shunted by an independent admittance. However,

it is not clear how such a network may be obtained as standard synthesis techniques result

in realisations that require Gyrators [93] and opamps. Even if passive realisations for (3.18)

and (3.19) are found, in practice, such an implementation is likely to be impractical. Given

that often low frequency modes of a structure are targeted for shunt damping, the required

inductors may be excessively large, i.e. 100 to 1000 Henries. A practical way of implementing

Ya or Yb is to use the synthetic admittance circuit as described in [36], or the alternative and

more effective method explained below in Section 3.4.

3.4 Experimental Verification

To validate the proposed concepts, experiments were carried out on a piezoelectric laminated

beam as shown in 3.6

3.4.1 Multivariable Experimental Apparatus

The test structure was a uniform aluminium beam with rectangular cross section and experi-

mentally pinned boundary conditions. Two pairs of collocated piezoelectric transducers were

attached symmetrically to either side of the structure, as shown in Figures 3.6 and 3.7. The

reason for placing the patches in a collocated fashion here, and throughout the Thesis, is the

ease of direct measurement of the transfer function Gvv(s), i.e. the transfer function between
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Figure 3.6: Experimental beam apparatus [85].

Parameter Symbol Unit

Length L 0.6 m

Width w 0.025 m

Thickness h 0.004 m

Young’s modulus E 65 × 109 N/m2

Poisson’s ratio ν 0.3

Mass / unit area ρ 10.6 Kg/m2

Table 3.1: Parameters of the simply supported beam.

the Vz(s) to Vp(s). Piezoelectric transducers used in these experiments were PIC1511 piezo-

electric patches. Details of the beam and PIC151 piezoelectric patches are listed in Tables

3.1 and 3.2.

3.4.2 Model Identification for Multivariable System

The first step in the analysis involved procuring a model for the transfer function matrix

Gvv(s) to simulate the effect of an attached piezoelectric shunt on the transfer function from

the applied actuator voltages Vin(s) to the generated piezoelectric shunt layer voltages Vp(s).

1These patches are manufactured by Polytec PI Ceramics.
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Figure 3.7: Simply supported beam apparatus.

Parameter Symbol Unit

Location x-direction x1 0.050 m

Location x-direction x2 0.240 m

Length Lp 0.0724 m

Thickness hp 0.00191 m

Width wp 0.025 m

Capacitance Cp 471 × 10−9 F

Young’s modulus Ep 62 × 109 N/m2

Poisson’s ratio νp 0.3

Strain constant d31 −320 × 10−12 m/V

Electromechanical coupling factor k31 0.44

Stress constant / voltage coefficient g31 −9.5 × 10−3 V m/N

Table 3.2: PIC151 piezoelectric parameters.
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These variables were internal and can not be measured directly whilst an impedance was

attached to the shunting layer. The transfer function from the applied actuator voltages

Vin(s) to the structural deflection at a point D(x, s) was considered. In the case where there

were two actuators and two sensors, a model with two inputs and three outputs was required:

[

Vp(s)

D(x, s)

]

= Gp(s) Vin(s), (3.20)

where Gp(jω) ∈ C
3×2 is the open-loop plant transfer function matrix.

As discussed earlier in Section 3.1, modelling of piezoelectric laminate structures is spatially

distributed problem and generally solved by means of a system identification technique. For

this case the Van Overschee and De Moor [105] algorithm will be used to identify a model

for the SIMO system.

Experiments were performed to obtain a state-space representation of Gp(s). Referring to

Figure 3.7, a pre-filtered periodic chirp was applied to each actuating layer in succession.

The resulting open-circuit piezoelectric voltages and displacements were recorded using a

dSpace ds1103 rapid prototype system. The chirp pre-filtering was performed by an FIR filter

designed to reduce the power of the excitation in bands enclosing the resonance frequencies

of the structure. This reduces the dynamic range and ‘flattened out’ the power spectral

density and signal-to-noise-ratio versus frequency at the outputs. An estimate for Gp(jω) was

then obtained using the empirical transfer function estimate [77]. The magnitude frequency

response of Gp(jω) is plotted in Figure 3.8. 340 frequency samples from 0 to 200 Hz were

used to identify a 6 state model for Gp(s). The magnitude frequency response of the model

is overlaid on the experimental data in Figure 3.8.

The system identification model matches the experimental data, as verified in Figure 3.8.

Results shown in this section and in Section 3.1 authenticate the system identification tech-

nique.

3.4.3 Implementation of a Multiport Synthetic Admittance

As introduced in Section 2.3, the synthetic admittance or voltage-control-current-source [35,

36] is used as a means for implementation of piezoelectric shunt damping circuits. Referring

back to Figure 2.2, iz is set as the output of a transfer function and input is the voltage

vz measured across the terminals, i.e. Iz(s) = Y (s)Vz(s). The resulting impedance seen

from the terminals is 1
Y (s) . As in reference [35], an analogue filter or DSP system is used
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Figure 3.8: Magnitude frequency response of Gp(s). Experimental data (· · · ) and identified

model (—).
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to implement the admittance transfer function. This controls the relationship between the

measured terminal voltage and applied current.

To implement the desired multiport synthetic admittance, two identical voltage-control-

current-sources were designed and built. Using a single dSpace DSP system two filters were

needed to simulate the required admittance transfer functions i.e. the controllers.

Implementing the Admittance Transfer Functions

On first inspection, the admittance structures (3.18) and (3.19) may appear difficult to im-

plement by means of either analog or digital signal processing. In fact the reverse is true,

the transfer function can be represented as a simple block diagram composed of second order

subsystems. Consider the admittance required for a single piezoelectric transducer using the

controller,

Ya(s) =

∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

1 − ∑N
i=1

αiω
2

i

s2+2diωis+ω2

i

Cps. (3.21)

The structure (3.21) is shown diagrammatically in Figure 3.9. Each subsystem Yi(s, αi
, d

i
, ω

i
),

parameterised for ease of online tuning, can be implemented by an analogue state variable

filter [59] or internally in a DSP algorithm. For digital implementation, each subsystem is

most easily parameterised in state-space form. For example,

Yi(s, αi
, d

i
, ω

i
) =

yi

u
=

αiω
2
i s

s2 + 2diωis + ω2
i

, (3.22)

where

ẋ =

[

0 1

−ω2
i −2diω

2
i

]

x +

[

0

1

]

u (3.23)

yi =
[

0 αiω
2
i

]

x.

3.4.4 Experimental Verification

In the experiments, one of the actuating piezoelectric transducers was used to disturb the

structure. The two transducers on opposite sides of the beam were shunted with resonant

impedances to attenuate the vibrations generated in the beam. Using the structure Ya(s) in
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Figure 3.9: System diagram of Equation (3.18) or (3.19).

Equation (3.18), shunt circuits were applied to both of the piezoelectric laminates. Specifi-

cally, Y1(s) was shunted to the first piezoelectric transducer and tuned to control the 2nd and

3rd modes, and Y2(s) was shunted to the second piezoelectric transducer and tuned to control

the 1st and 3rd modes. Admittance parameters are shown in Table 3.3. The admittance has

a diagonal structure

Ya(s) = diag (Y1(s) , Y2(s)) , (3.24)

where

Y1(s) =

(

α1,2ω2

1,2

s2+2d1,2ω1,2s+ω2

1,2

+
α1,3ω2

1,3

s2+2d1,3ω1,3s+ω2

1,3

)

1 −
(

α1,2ω2

1,2

s2+2d1,2ω1,2s+ω2

1,2

+
α1,3ω2

1,3

s2+2d1,3ω1,3s+ω2

1,3

)Cps (3.25)

and

Y2(s) =

(

α2,1ω2

1,1

s2+2d2,1ω1,1s+ω2

1,1

+
α2,3ω2

1,3

s2+2d2,3ω1,3s+ω2

1,3

)

1 −
(

α2,1ω2

1,1

s2+2d2,1ω1,1s+ω2

1,1

+
α2,3ω2

1,3

s2+2d2,3ω1,3s+ω2

1,3

)Cps. (3.26)

Figure 3.10 compares the simulated frequency response of the unshunted system with that

of the shunted system. This figure is associated with a 2 × 3 system with inputs are the

voltages applied to the two actuating piezoelectric patches, with outputs that are the induced
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piezoelectric voltages and the displacement measurement at x = 0.17 m. The displacement

measurements were obtained using a Polytec PSV-300 laser scanning vibrometer.

Figure 3.11 demonstrates the effect of the proposed admittance structure. Observe that by

shunting the two piezoelectric patches with the proposed admittances, the closed-loop poles

of the system have been pushed further into the left half of the complex plane. Notice that

both transducers are used to dampen the third mode, while the first two modes are damped

using the second and first transducers respectively. This is due to the location of which the

two patches that are mounted on the beam. The first patch offers little authority over the

first mode of the beam, while the second patch displays a similar lack of authority over the

second mode. Both transducers, however, are effectively reducing vibration corresponding to

the third mode of the structure.

In these experiments, variables internal to the piezoelectric transducers were not directly

measurable. Therefore, it was not possible to generate experimental results corresponding

to all entries of the transfer function matrix displayed in Figure 3.10. However, as the dis-

placement could be measured, results were obtained by applying a disturbance voltage to the

first piezoelectric transducer and measuring the resulting displacement. The corresponding

transfer functions are plotted in Figure 3.12. Observe that the experimental results closely

match the simulation.

Experimental results show a considerable attenuation of the resonant peaks; 5 dB for the 1st

mode, 10.5 dB for the 2nd mode and 14.4 dB for the 3rd mode.

To examine the time domain performance of the damped system, a 200 Hz low pass filtered

step was applied to Vin1
. The simulated and experimental displacement responses measured

at x = 0.17 m are plotted in Figure 3.13. Note that the response is dominated by the first

mode of vibration. This is a result of the lower damping achieved for this mode and the

comparatively greater low frequency components contained in a step function.

3.5 Discussion

This chapter demonstrates that the problem of piezoelectric shunt damping with several

piezoelectric transducers and a multiple impedance is equivalent to a multiple-input-multiple-

output feedback control problem parameterised by a multi-input impedance. The multi-input

impedance was shown to be inside an inner multi-feedback loop.
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Parameter Unit (Hz)

ω1,2 71.7

ω1,3 161.6

ω2,1 22.14

ω2,3 167.9

Parameter Unit

d1,2 0.021

d1,3 0.024

d2,1 0.025

d2,3 0.023

Parameter Unit

α1,2 0.5

α1,3 0.5

α2,1 0.5

α2,3 0.5

Table 3.3: Admittance parameters.
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Figure 3.10: Simulated open-loop (−−) and closed-loop (—) magnitude frequency response.
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Figure 3.12: Simulated (a) and experimental (b) frequency response from Vin1
to the displace-

ment measured at x = 0.17 m. open-loop (−−) and closed-loop (—).

85



0 0.5 1 1.5 2
−0.01

−0.005

0

0.005

0.01

(a
)

Simulated

0 0.5 1 1.5 2
−0.01

−0.005

0

0.005

0.01

(b
)

t (s)

0 0.5 1 1.5 2
−0.01

−0.005

0

0.005

0.01
Experimental

0 0.5 1 1.5 2
−0.01

−0.005

0

0.005

0.01

t (s)

Figure 3.13: Open-loop (a) and closed-loop (b) displacement response at x = 0.17 m to a

low-pass filtered step response applied to Vin1
.

Two decentralised shunt impedances/controllers were introduced with favourable stability

and robustness properties. The proposed theoretical controllers were validated experimentally

on a multivariable experimental apparatus. damping performance was found to match the

theroretical and experimental results. However, damping results were slightly disconcerting,

since it was anticipated that using multiple shunts should provide increased damping i.e.

more control. Unfortunately this was not the case, compared to results found in Chapter 2

and can be attributed to the experimental apparatus configuration. This apparatus had more

damped resonate peaks compared to the apparatus found in Chapter 2, and can be attributed

to a more durable configuration i.e. thicker electrical wire. This durable configuration can

be seen in Figure 3.6 when compared to Figure 2.14.

Overall, this chapter confirms the potential of multivariable shunt control methodologies and

paves the way for further research with more realistic applications.

86



Part II

Electromagnetic Shunt Control
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Chapter 4

Electromagnetic Shunt Damping

Part II lays the foundation for an innovative technique for the control of vibration; electromag-

netic shunt control. In comparison to previous concepts presented in this work, as illustrated

in Section 2.1, electromagnetic shunt control can be designed to minimise vibration without

the need of an additional feedback sensor.

In Chapter 2 a technique is presented for the implementation of piezoelectric shunt damping.

In this chapter, a new type of shunt damping is proposed: electromagnetic shunt damping.

The proposed technique is similar to piezoelectric shunt damping where an appropriately

designed impedance is attached to the terminals of an electromagnetic transducer. This

provides additional damping to the mechanical structure and eliminates the need for an

external sensor, therefore possibly reducing the cost, complexity and sensitivity to transducer

failure. Theoretical and experimental results will be presented for a simple electromagnetic

shunt damped system.

4.1 Background

Piezoelectric transducers [43] have similar electromechanical properties compared to electro-

magnetic transducers but exhibit higher mechanical impedance properties. Electromagnetic

transducers have considerably different characteristics to piezoelectric transducers. They;

have a much greater stroke (usually within the millimeter range as opposed to the microme-

ter range of piezoelectric transducers), are more physically robust and can be manufactured

to any dimensional scale (micro devices [6] to large electrodynamic shakers [32]). Electro-
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magnetic transducers can be found in acoustic speakers [55], active car suspension systems

[73], instrument isolation platforms [95], magnetic levitation [19, 108] and magnetic bearings

[87].

A new research field called electromagnetic self-sensing, which is similar to the piezoelectric

self-sensing technique [7, 31], has recently evolved [19, 53, 74, 87, 108]. A good example

of this can be found in reference [21], where the coil current and/or driving voltage can be

measured to estimate the relative velocity of the coil (for this case, a speaker coil).

4.2 Electromagnetic Transducers

A Danish scientist, Hans Christian Oersted, established the relationship between electricity

and magnetism in 1819. During a lecture he demonstrated that a current carrying wire

deflected a nearby compass needle. His discovery, linking magnetic fields with an electric

current, was the origin of magnetism.

During the same period, a leading French scientist, Andre-Marie Ampere, is credited for the

discovery of electromagnetism - the relationship between electric current and magnetic fields.

His work was heavily influenced by the findings of Hans Christian Oersted. Ampere presented

a series of papers expounding the theory and basic laws of electromagnetism, which he later

called electrodynamics.

Another influential scientist from the same era includes Michael Faraday. He is recognised for

combining Oersted’s and Ampere’s earlier works into somewhat more practical applications.

He founded electromagnetic induction which is commonly referred to as Faraday’s Law. His

contribution involved the invention of the electric motor and generator, which established the

first known electromagnetic transducers.

Electromagnetic transducers exhibit similar electromechanical properties as piezoelectric ac-

tuators and they can be used as actuators, sensors or both [53, 83, 91]. Piezoelectric transduc-

ers take advantage of an electromechanical union between the terminal voltage and developed

strain within the transducer, as described in Section 2.1. Correspondingly, electromagnetic

transducers take advantage of the union between coil current and induced force. Alternatively,

when an electromagnetic transducer experiences a velocity, a voltage is generated across the

terminals of the transducer. These transducers are suitable for in-plane force control, have

large stroke, physical robustness, high bandwidth, and are low cost which renders them useful

in a wide range of applications.
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Figure 4.1: Sensing (a) and actuating (b) electromagnetic transducer.

4.2.1 Modelling

An electrical conductor, in the form of a coil moves in a fixed magnetic field which generates

voltage V across the terminals of the coil and is proportional to the relative velocity ν, as

shown in Figure 4.1 (a). That is, V ∝ ν [91]. Alternatively,

V = Blν, (4.1)

where B is the magnetic flux (in teslas or Wb/m2) and l is the coil conductor length (in

metres). Usually the magnetic field is generated by a permanent magnet or a secondary

energised coil conductor. Conversely, the coil can be stationary while the magnetic field,

normally a permanent magnet, is made to move.

As illustrated in Figure 4.1 (b), when a current I (in amperes) is applied to the coil, a force

F (in newtons) is generated and can be written as

F = BlI. (4.2)

Therefore, Equation (4.1) and (4.2) can be rewritten [91] as

V

ν
=

F

I
= Bl = Ci, (4.3)

where Ci is the ideal electromechanical coupling coefficient.

An electromagnetic transducer can be electrically modelled as an inductor Le, resistor Re and

a velocity dependent voltage source Ve [53], as shown in Figure 4.2. When the electromagnetic
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transducer is coupled to a mechanically resonate system, an electro-motive-force (emf) is

generated and hence the mechanical velocity can be determined from the terminal voltage.

However, more complex forms of the internal impedance can be modeled such as hysteresis,

saturation, eddy currents and stray capacitance. For illustration purposes, a nonlinear model

is shown in Figure 4.3.

4.3 Modelling a Mechanical System

For most applications where mechanical vibration becomes a problem, the mechanical system

can be modelled as a simple mass-spring-damper, as shown in Figure 4.4 (a). The equivalent

mass m (in kg), spring constant k (in N/m) and damping constant d (in Ns/m) can be easily

determined. The equation of motion for this forced system is given by

mẍ(t) + dẋ(t) + kx(t) = Fd(t), (4.4)

where ẍ(t), ẋ(t) and x(t) is the acceleration, velocity and displacement of the mass respec-

tively, and Fd(t) is the applied disturbance force. Equation (4.4) can be in the dimensionless

form as

ẍ(t) + 2ζnωnẋ(t) + ω2
nx(t) = fd(t), (4.5)

where ωn is the natural frequency

(

i.e. ωn =
√

k
m

)

, ζn is the damping coefficient
(

ζn = d√
4mk

)

and the scaled disturbance force fd(t) = Fd(t)
m

.
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Consider Figure 4.4 (b) where an electromagnetic transducer (coil 1) is attached to the mass.

If a disturbance current Id(t) is applied to a linear electromagnetic transducer, a disturbance

force Fd(t) is induced, such that

Fd(t) = C1Id(t), (4.6)

where C1 is the electromechanical coupling coefficient relating the applied current to a re-

sulting force in coil 1. Using the equation of motion, the disturbed system has the following

relationship:

mẍ(t) + dẋ(t) + kx(t) = C1Id(t). (4.7)

By taking the Laplace transform, the transfer functions relating the current Id(s) to displace-

ment x(s) and the current Id(s) to velocity ν(s) are

Gix(s) ,
x(s)

Id(s)
=

C1

ms2 + ds + k
(4.8)

and

Giν(s) ,
ν(s)

Id(s)
=

C1s

ms2 + ds + k
, (4.9)

where the mass velocity ν(s) is equivalent to ν(s) = sx(s). Referring to Figure 4.4 (b), note

that these two equations are valid when coil 2 is held in open-circuit, i.e. Z(s) = ∞.

4.3.1 Shunted Composite Electromechanical System

For an electromagnetic shunted composite system, as shown in Figure 4.4 (b), an impedance

Z(s) is attached to coil 2. Therefore the following relationship is

mẍ(t) + dẋ(t) + kx(t) = Fd(t) − Fe(t), (4.10)

where Fe(t) is the opposing force due to the impedance Z(s) attached to the terminals of the

electromagnetic transducer 2 or coil 2. In the Laplace domain, the following relationship is

ν(s) =
C1s

ms2 + ds + k
Id(s) −

s

ms2 + ds + k
Fe(s), (4.11)

where Id(s) and Fe(s) are the inputs to the system. That is, Id(s) is the input current

disturbance applied to coil 1 and Fe(s) is the opposing force due to the shunt electromagnetic

transducer coil 2.

To determine the opposing force Fe(s), consider the simplified electrical model of the elec-

tromagnetic shunt, as shown in Figure 4.5. Ohm’s law states that

Vz(s) = Iz(s)Z(s), (4.12)
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where Vz(s) is the voltage across the terminals of the shunt impedance Z(s) and Iz(s) is the

corresponding current. From the Kirchhoff’s voltage law, the following relationship between

Ve(s) and Vz(s) is obtained as

Vz(s) = Ve(s) − (Les + Re)Iz(s), (4.13)

which implies

Vz(s) =
Z(s)

Les + Re + Z(s)
Ve(s). (4.14)

As shown in Equation (4.1), the following linear relationship is

Ve(s) = C4ν(s), (4.15)

where C4 is the electromechanical coefficient relating ν(s) to Ve(s). Since the shunted elec-

tromagnetic transducer is attached to the mass m, ν(s) is equivalent to sx(s).

By substituting (4.15) into (4.14), the results are

Vz(s) =
Z(s)

Les + Re + Z(s)
C4ν(s). (4.16)

Alternatively, the current flowing through the shunt Iz(s) is

Iz(s) =
Vz(s)

Z(s)
=

1

Les + Re + Z(s)
C4ν(s) (4.17)

and the opposing shunt force Fe(s) = C3Iz(s). Assuming there is a linear electromagnetic

transducer, the results are

Fe(s) =
C3C4

Les + Re + Z(s)
ν(s) = K(s)ν(s), (4.18)
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where the effective controller for the system is

K(s) =
C3C4

Les + Re + Z(s)
. (4.19)

By substituting (4.18) into (4.11), the composite system transfer function relating Id(s) to

ν(s) is

G̃iν(s) ,
ν(s)

Id(s)
=

C1s

ms2 +
(

d + C3C4

Les+Re+Z(s)

)

s + k
, (4.20)

as shown in Figure 4.6. The damped system transfer function G̃iν(s) is in the form of a

regulator feedback control problem where the velocity ν(s) is to be regulated to zero. Also,

the effective controller K(s) is parameterised by the impedance Z(s), as shown in Figure 4.6.

4.3.2 State-space Shunted Composite Electromechanical System

Figure 4.7 shows a general mechanical plant model P where the inputs to the plant are

electromagnetic transducer force Fe and disturbance w. A typical disturbance scenario w

could include displacement, velocity, acceleration and/or force disturbances. For this system,

the general plant has only a single output; velocity ν. Referring to the simple mass-spring-

damper system, as shown in Figure 4.4 (a), the transfer function GFν(s) from an applied

96



Plant
 (   )

w

F  e

νDisturbance  (  )

Force  (    )
P  

Velocity (  )

Figure 4.7: General mechanical plant P model.

GFν ν
w

Fe

C1

P

Id

Figure 4.8: Mechanical plant P with disturbance current Id and control force Fe.

force Fd to the resulting velocity ν is

GFν(s) =
ν(s)

Fd(s)
=

s

ms2 + ds + k
. (4.21)

Alternatively, the state-space model for GFν(s) can be written as

ẋp(t) = Apxp(t) + BpFd(t) (4.22)

ν(t) = Cpxp(t)

where the states of the system are represented by xp(t).

Consider Figure 4.4 (b) where a simple mass-spring-damper is coupled by two electromagnetic

transducers; transducer 1 and 2. A disturbance force Fd is generated by transducer 1 (or coil

1), while an opposing control force Fe is generated by transducer 2 (or coil 2), as shown in

Figure 4.8. The electromechanical coupling coefficients C1 through C4 are as

C1 = Fd

Id
C2 =

Ve1

ν
C3 = Fe

Iz
C4 =

Ve2

ν
. (4.23)

Since transducers (or coils) are not perfectly matched, the force-current or velocity-voltage

coupling coefficients will not be identical.

Using the electromechanical coupling coefficients, defined in Equation (4.23), as well as Equa-

tions (4.16) and (4.17), the electromagnetic system E for transducer 2 can be modelled, shown

in Figure 4.9. Note Figure 4.9 defines the voltage and current driven transducer for transducer

2.
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Considering the mechanical plant P and shunted electromagnetic transducer E, as shown in

Figures 4.8 and 4.9 the composite system G can be constructed, as shown in Figures 4.10 (a)

and 4.11 (a), where Y (s) is the admittance and Z(s) is the impedance.

The admittance Y (s), shown in Figure 4.10 (a), is the transfer function between the trans-

ducer terminal voltage and current. By joining the mechanical system P and electromagnetic

system E, as shown in Figure 4.10 (b), the composite system G can be cast as a regular

feedback control problem where the controller is the admittance Y (s). Therefore, the com-

posite closed-loop transfer function from an applied disturbance current Id(s) to the resulting

plunger velocity ν(s) is

G̃iν(s) ,
ν(s)

Id(s)
=

GFν(s)C1

1 + K(s)GFν(s)
, (4.24)

where the effective feedback controller is K(s). That is

K(s) =
C3C4Y (s)

1 + (Les + Re)Y (s)
. (4.25)

Similar results can be achieved for the impedance Z(s), as shown in Figure 4.11, where the

equivalent feedback controller is

K(s) =
C3C4

1
Les+Re

1 + 1
Les+Re

Z(s)
. (4.26)

4.4 Proposed Shunt Controllers

As illustrated previously in Figures 4.10 and 4.11, and in Equation (4.24), the impedance

or admittance can be parameterised as a feedback control problem for the mechanical sys-

tem GFν(s). In the following subsections, a number of novel impedance and/or admittance

controllers will be developed to dampen structural vibration.

4.4.1 Capacitor-Resistor Controller

As shown in Section 2.2, authors Forward [41] and Hagood et al. [48] suggested that a series

inductor-resistor shunt circuit attached across the conducting surfaces of a piezoelectric trans-

ducer can be tuned to dissipate the mechanical energy of a host structure. They demonstrated

the effectiveness of this technique by tuning the resulting inductor-resistor (L − R) circuit

and inherent capacitance of the piezoelectric transducer to a specific resonance frequency of

the host structure.
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Figure 4.12: Capacitor-resister shunt circuit for an electromagnetic transducer.
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Similar to the piezoelectric analogy, a resonant shunt circuit could be used to provide me-

chanical damping. For this scenario, though, a capacitor-resistor (C − R) circuit, as shown

in Figure 4.12, needs to be applied to the terminals of the electromagnetic transducer. That

is

Z(s) =
1

Cs
+ R

=
CRs + 1

Cs
, (4.27)

where the capacitance value is governed by ω2
n = 1

CLe
. Le denotes the inherent inductance

of the electromagnetic transducer to be shunted and ωn is the resonance frequency of the

mechanical structure to be controlled.

For example, for a simple mass-spring-damper system, as shown in Figure 4.4 (b), the capac-

itance is C = 1
ω2

nLe
= 1

k
m

Le
. That is ωn =

√

k
m

, as in Equation (4.5), where k is the spring

constant and m the mass of the mechanical system.

For the shunted electromagnetic transducer, ν(s) is related to Fe via Fe(s) = K(s)ν(s), where

the effective controller is

K(s) =
C3C4

1
Le

s2 + Rt

Le
s + 1

CLe

. (4.28)

It should be noted that the controller has a resonant structure, thus Rt = (Re + R) determines

the controller damping.

In order to determine an appropriate value for the total shunt resistance Rt, an optimisation

approach can be used to minimise the H2 norm of the closed-loop system G̃iν(s) in references

[12, 35]. This required a solution to the following optimisation problem

R∗
t =

arg min

Rt > 0

∥

∥

∥
G̃iν(s)

∥

∥

∥

2
. (4.29)

4.4.2 Ideal Negative Inductor-Resistor Controller

Consider a standard velocity feedback regulator problem, as shown in Figure 4.13, where

the velocity ν(s) is sensed and an opposing control force Fe(s) is applied to the mechanical

structure. That is Fe(s) = K(s)ν(s), where K(s) is the control gain. From Figures 4.6 and

4.13, there is a similar feedback control structure where the control force is

Fe(s) =
C3C4

Les + Re + Z(s)
ν(s) = K(s)ν(s). (4.30)
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Therefore, the effective controller K(s) is equivalent to

K(s) ,
C3C4

Les + Re + Z(s)
. (4.31)

Now, by simple manipulation of Equations (4.26) and (4.24), the closed-loop system can be

obtained as

G̃iν(s) ,
ν(s)

Id(s)
=

GFν(s)C1

1 + C3C4

Les+Re+Z(s)GFν(s)

=
GFν(s)C1 (Les + Re + Z(s))

Les + Re + Z(s) + C3C4GFν(s)
. (4.32)

Note that in the transfer function, Equation (4.32), the numerator is Les+Re+Z(s). Ideally,

by setting Les + Re + Z(s) to zero, the closed-loop system G̃iν(s) will be zero. Likewise, by

selecting

Zi(s) = − (Les + Re) (4.33)

or

Yi(s) = − 1

Les + Re
, (4.34)

there will be little or no effect by the disturbance on the mechanical system. By implementing

Equations (4.34) or (4.33), the effective controller is simply a proportional feedback loop of

infinite gain, that is K(s) = ∞. A similar result can be found by assuming the composite

system G̃iν(s), Equation (4.20), has infinite damping, i.e.
(

d + C3C4

Z(s)+Les+Re

)

= ∞.

For the ideal impedance Zi(s), or Yi(s) the shunt control scheme is virtually immune to

variations in structural dynamics, since the control only depends on the dynamics of the

electromagnetic transducer. Also, the composite system will be stable if the controller is less

than or equal to the inductance-resistance of the electromagnetic transducer.

In practice the equivalent electrical model of the electromagnetic transducer does not fully

describe the internal dynamics, in particular the electromechanical coupling. To deal with

uncertainty in the transducer dynamics impedance Y (s) is chosen conservatively, such that

Y (s) = − 1

ε(Les + Re)
, (4.35)

where ε is an uncertainty gain ε < 1. A similar result exists for piezoelectric transducers and

can be found in references [10, 11, 116].
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4.4.3 Impedance Synthesis

As discussed earlier in Section 4.3.2, the closed-loop mechanical system G̃iν(s) can be pa-

rameterised by a feedback controller impedance Z(s), as shown in Figure 4.11, and in the

Equation (4.24). Note an input disturbance Id results in an output velocity ν.

By applying LQR synthesis control techniques [68], a state-space model is required for the

composite system G. Therefore, the state-space model form the electromagnetic transducer

coil admittance, i.e. 1
Les+Re

, that is

ẋy(t) = Ayxy(t) + ByV (t) (4.36)

Iz(t) = Cyxy(t),

where

Ay =

[

−Re

Le

]

By = [1] Cy =

[

1

Le

]

and the states of the admittance is represented by xy(t).

Now the composite system G can be represented as a state-space model as

ẋg(t) = Agxg(t) + Bg

[

Id(t)

Vz(t)

]

[

ν(t)

Iz(t)

]

= Cgxg(t), (4.37)
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where the concatenated matrices xg(t), Ag, Bg and Cg as

xg(t) =

[

xp(t)

xy(t)

]

, Bg =

[

BpC1C4 0

0 −By

]

(4.38)

and

Ag =

[

Ap BpCyC3C4

ByCp Ay

]

, Cg =

[

1
C4

Cp 0

0 Cy

]

. (4.39)

For this case, the LQR controller design objective is to minimise the velocity ν(t) while

constraining the amplitude of the voltage control signal Vz(t). Therefore, the linear quadratic

objective is to minimise

J =

∫ ∞

−∞

{

ν2(t) + (kuVz(t))
2
}

dt, (4.40)

where the voltage control signal Vz(t) has a weighting ku. Or, in the standard LQR control

framework,

J =

∫ ∞

−∞

{

x
′

g(t)Qxg(t) + u
′

(t)Ru(t)
}

dt, (4.41)

where Q =
[

1
C4

Cp 0
]′ [

1
C4

Cp 0
]

and R = k2
u.

Alternatively, by minimising the H2 control objective of the weighed sum of the velocity ν and

control voltage signal Vz in presence of a disturbance Id, the following H2 control objective

can be defined as

J =

∥

∥

∥

∥

ν(s) + kuVz(s)

Id(s)

∥

∥

∥

∥

2

. (4.42)

For the augmented plant G̃, as shown in Figure 4.14, G includes the weighting ku for the

voltage control signal Vz, in Equation (4.42) now minimising

J =

∥

∥

∥

∥

z(s)

w(s)

∥

∥

∥

∥

2

, (4.43)

where Equation (4.37) has a non-zero D matrix,

D̃g =

[

0 ku

0 0

]

. (4.44)

4.5 Experimental Verification

In order to verify the modelling and proposed controller designs presented in the previous

sections, each will be applied to an experimental electromagnetic apparatus.
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4.5.1 Electromagnetic Apparatus

The electromagnetic apparatus consists of a rigid support, flexible supports, mounting plate

and coils as pictured in Figure 4.15. The experimental apparatus essentially consists of two

identical electromagnetic transduces (or coils) and a magnetic plunger which is supported

by two flexible disks. A sectional view of the experimental apparatus is shown in Figure

4.16. The transducer coils consists of 0.25 mm diameter enamel coated copper wire with

an electrical resistance of Re = 3.3 Ω and Le = 1 mH inductance. The magnetic plunger

consists of three Neodymium-Iron-Boron magnets with opposing poles that meet at the center

of each electrical coil. Note the a strong magnetic field exits at right angles to the magnetic

plunger. When the magnetic plunger is in travel, a magnetic field intersects through the coil

and hence a voltage is generate at the transducer terminals. The physical parameters of the

experimental electromagnetic apparatus is summarised in Table 4.1. To prevent distorting

the magnetic field, non-magnetic materials such as aluminum and copper were chosen for the

construction of the electromagnetic apparatus.

By applying a disturbance current Id to transducer 1 and measuring the plunger velocity

with a PSV-300 Polytec vibrometer, the experimental open-loop (Giν) and closed-loop (G̃iν)

transfer functions can be measured.
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Parameter Symbol Unit

Spring coefficient k 56 kNm−1

Damping coefficient d 2.667 Nsm−1

Mass or magnetic plunger mass m 0.150 Kg

Coupling (current-to-force for transducer 1) C1 = Fd

Id
3.55

Coupling (velocity-to-voltage for transducer 1) C2 =
Ve1

ν
4.06

Coupling (current-to-force for transducer 2) C3 = Fe

Iz
3.55

Coupling (velocity-to-voltage for transducer 2) C4 =
Ve2

ν
4.06

Transducer 2 coil inductance Le 1 mH

Transducer 2 coil resistance Re 3.3 Ω

Table 4.1: Experimental electromagnetic apparatus parameters.

Figure 4.15: Experimental electromagnetic apparatus.
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Figure 4.16: Section view of experimental electromagnetic apparatus.

4.5.2 Implementing Electromagnetic Shunt Controllers

As discussed earlier in the thesis in Section 2.3, a current-controlled-voltage-source (CCVS)

or a voltage-controlled-current-source (VCCS) was used to implement the desired shunt

impedances or admittances. However, the CCVS and VCCS sensing differential amplifiers

were reconfigured to operate at lower voltages and higher currents to match the dynamics of

the electromagnetic transducer.

4.5.3 Shunt Controllers

In this section, three electromagnetic shunt damping controllers will be examined.

Capacitor-Resistor Controller

The electromechanical model was first determined by measuring the frequency response from

an applied current Id to the resulting plunger velocity ν(s), that is Giν(s), as shown in Figure

4.17. Observe that the model is an accurate representation of the physical system Giν(s).

Since damping the fundamental frequency of the mass-spring-damper system is desired, i.e.

ωn = 97.3 Hz, the required shunt capacitance value is C = 2.7 mF . Using the proposed
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Figure 4.17: Open-loop frequency response from an applied actuator current to plunger velocity,

i.e. Giν(s), model (—) and measured results (−−).

optimisation strategy the required optimal shunt resistance R∗
t = 0.29 Ω was determined.

Alternatively, R∗
t can be found by plotting H2 norm against Rt, as shown in Figure 4.18.

With the aim of damping the system, a total series resistance Rt = Re + R = 0.29 Ω and a

capacitance 2.7 mF were applied to the second winding using the CCVS apparatus, explained

in Section 4.5.2. Therefore, the required impedance Z(s) is

Z(s) =
1

Cs
+ R =

1

0.0027s
− 3.01. (4.45)

The pole-zero map and the frequency response for the passive controller are shown in Figures

4.19 and 4.20 respectively. After examining the open-loop and closed-loop pole locations

shown in Figure 4.21, it can be appreciated that the controller is clearly acting to increase

the system damping.

The measured open-loop simulated damped G̃iν(s) and measured damped frequency re-

sponses are shown in Figure 4.22. A significant reduction of 21.8 dB in the magnitude

of the electromechanical system is observed. The effect of such reduction greatly decreases

the settling time of the system. Figure 4.23 shows the undamped response of the system to

a 1 Amp 300 Hz low-pass filtered step in actuator current. In comparison, the damped re-

sponse shown in Figure 4.23 settles in less than one tenth of the time taken by the undamped

system.
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system.
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Figure 4.22: Open-loop (· · · ), theoretically predicted damped (—) and measured damped (−−)

frequency responses from an applied current to resulting plunger velocity.
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Figure 4.23: Velocity response ν(s) (in m/s) of the capacitor-resistor controlled system to a

1 Amp 300 Hz low-pass filtered step disturbance current Id(s); experimental open-loop (a),

experimental closed-loop (b), and simulated closed-loop(c).
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Ideal Negative Inductor-Resistor Controller

There are two possible ways to implement the proposed negative inductor-resistor controller:

(1) negative-impedance-converter (NIC) [59] or (2) voltage-controlled-current-source (VCCS).

For the purpose of the proposed work, only the use of the voltage-controlled-current-source

is considered, as illustrated in Figure 2.3 (b).

Experiments were carried out on the experimental apparatus, as described above, using the

proposed negative inductor-resistor admittance controller Y (s). Assuming Y (s) = − 1
ε(Les+Re)

,

where ε = 0.94 as synthesized by VCCS, coil 2 is employed to damp translational vibrations

resulting from an applied disturbance current Id to coil 1. To remove discrepancies in C3 and

C4 at high frequencies, the experimental admittance is low-pass filtered at ≈ 1 kHz.

The simulated frequency response for the negative inductor-resistor controller is shown in

Figure 4.24. Examining the open-loop and closed-loop pole locations, as shown in Figure 4.25,

note that the controller is clearly acting to increase the internal damping of the mechanical

system.

The measured open-loop simulated damped G̃iν(s) and measured damped frequency re-

sponses are shown in Figure 4.26. A significant reduction of 28.2 dB in the magnitude

of the electromechanical system is observed. The effect of such reduction greatly decreases

the settling time of the system. Figure 4.27 shows the undamped response of the system to

a 300 Hz low-pass filtered step in actuator disturbance current. In comparison, the damped

response shown in Figure 4.27 settles in approximately less than one twentieth of the time

taken by the undamped system.

Impedance Synthesis

For the impedance synthesis, the electromechanical system will be treated as a plant, there-

fore, sensing and actuation gains will be factored into the system as shown in Figure 4.28.

Figure 4.28 shows the sensing and actuator gains where voltages V1 through V4 represent

the signals applied to, or sensed from, a synthetic impedance, as described in Section 4.5.2.

Gains for a1, a2, a3 and a4 can be found in Table 4.2. The desired electrical shut impedance

seen by the transducer is related by the controller K(s), and the gains a3 and a4. That is

Zc(s) =
Vz(s)

Iz(s)
= a3K(s)a4. (4.46)
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Figure 4.24: Magnitude and phase response for negative inductor-resistor controller.
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Figure 4.25: Open-loop (©) and closed-loop (×) pole locations.

Gain Unit

a1 1 A/V

a2 40 V/ms−1

a3 −4 V/V

a4 10 V/A

Table 4.2: Shunt voltage controlled electromagnetic system external gains.
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Figure 4.26: Open-loop (· · · ) theoretically predicted damped (−−) and measured damped (—)

frequency responses from an applied current to the resulting plunger velocity.
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Figure 4.27: Velocity response ν(s) (in m/s) of the negative inductor-resistor controlled system

to a step disturbance current Id(s); experimental open-loop (a) , experimental closed-loop (b),

and simulated closed-loop (c).
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To evaluate the theoretical model, as discussed in Section 4.24, the experimental multivari-

able frequency response was measured consecutively from each input to output pair. The

residual input was set to zero while measuring the component SISO frequency responses.

The theoretical and experimental, magnitude and phase responses for the plant P are shown

in Figures 4.29 and 4.30. A good correlation between the theoretical and experimental re-

sponses can be observed and, therefore positively validating the proposed theoretical model.

LQR Impedance Synthesis Outlined in Section 4.4.3, a LQR can be designed to com-

mand Vz with the objective of regulating the performance signal of the weighted sum of ν and

Vz. The measured shunt current Iz is used to estimate the states of the system through an

observer [68]. By designing a LQR gain matrix and combining it with an observer, a desired

active shunt impedance can be found and then applied to the electromagnetic transducer to

dampen structural vibration.

Based on the previously validated theoretical model, a LQR gain matrix was designed to

minimise the following objective

J =

∫ ∞

−∞

{

a2ν
2(t) +

7

a3
V 2

z (t)

}

dt, (4.47)

where 7 is the relative control weight. An observer was designed by using standard pole

placement whereby the desired closed-loop poles were chosen to be 2 times that of the real

component for the open loop poles. As in standard LQR controller designs [68], the control

signal weighting and observer pole locations were determined experimentally to provide a
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Figure 4.31: Poles (×) and zeros (©) of the LQR impedance.

reasonable a trade-off between control performance, robustness and the control signal ampli-

tude.

The complex impedance frequency responses are shown in Figure 4.32. Frequency and time

domains were used to assess the damping performance of the LQR controller. By applying a

disturbance current Id, the theoretical and experimental open-loop and closed-loop frequency

responses are shown in Figure 4.34. From Figure 4.34 note that the designed controller

damped the resonate peak by 19.4 dB. By applying a disturbance current Id step change,

which was filtered by a 300 Hz low-pass filter, the open-loop and closed-loop time domain

velocity response was obtained, as shown in Figure 4.35.

The theoretical closed-loop time response was determined by measuring the filtered step

response and applying it to the closed-loop theoretical model.

H2 Impedance Synthesis In the analogy to Section 4.5.3, an active shunt impedance was

designed to minimise the H2 norm of the transfer function between a disturbance current Id

and a performance signal z = ν + kuVz. That is,

J =

∥

∥

∥

∥

∥

a2ν(s) + ku

a3
Vz(s)

Id(s)
a1

∥

∥

∥

∥

∥

2

. (4.48)
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Figure 4.32: LQR impedance (—) and ideal negative inductor-resistor controller (- -).
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Figure 4.33: Open-loop (©) and closed-loop (×) pole locations of the LQR impedance.
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frequency responses from an applied current Id(s) to the resulting plunger velocity ν(s).
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Figure 4.35: Step disturbance current Id(s) to velocity ν(s) of the LQR impedance controlled

system; experimental open-loop (a), closed-loop (b) and simulated closed-loop (c).
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The H2 problem is well defined and feasible for the system under consideration. All the H2

control conditions are satisfied, that is, the plant is minimal, proper, controllable, observable,

and finite. Using the existing tools, the algebraic Riccati solution implemented by the µ-

Synthesis Toolbox for Matlab to find a solution, some additional conditions must be meet.

In particularly, the full rank condition on the plant matrices D21 and D12 i.e. the feed-

through term from w to y and u to z is non-zero. The only condition not met is D21, as the

performance signal z already contains a weighting ku on the control signal Vz. To overcome

this problem an artificial feed-through term was added to D21. Now, there are two design

parameters, ku and D21 and were chosen to be 0.1 and 1 respectively. Observations found that

by decreasing either of the parameters ku and D21, the controller bandwidth and closed-loop

damping increases.

Under the same test conditions, as discussed in Section 4.5.3, the damping performance for

the H2 controller was 19.25 dB which is comparable to that of the LQR controller.

4.6 Discussions

The aim of this chapter was to develop a new shunt damping technique, electromagnetic

shunt damping. This technique was found to have a similar feedback structure to that of

piezoelectric shunt damping, as presented earlier in Chapter 2. In addition, this vibration

control strategy also eliminated the need for any external sensor.

Like the piezoelectric analogy, as shown in Chapter 2, a resonant shunt circuit capacitor-

resistor controller can be used to compensate for the reactive source impedance over a small

frequency band. The circuit in Figure 4.12 was shown to significantly attenuate a lightly

damped mechanical system. The circuit requires a negative resistance to cancel the natural

resistance of the coil. Capacitor-resistor controller or resonant shunt circuits provide a fixed

performance objective. They introduce additional dynamics to effectively damp a highly

resonant structural mode. Although this is desirable in piezoelectric applications, the same

objective is unlikely to arise in electromagnetic applications. For example, most mechanical

system are likely to contain a high degree of natural damping. Resonant shunt circuits provide

no additional performance in such cases. Overall, the capacitor-resistor controller is a very

simple, yet a very effective controller for lightly damped mechanical systems.

The ideal negative inductor-resistor controller, as might be expected, a ‘miracle’ controller

has limited practical uses. By implementing (4.34) or (4.33), the effective controller is simply

a proportional feedback loop of infinite gain, as shown in Figure 4.13. Besides the magni-
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tude of control energy required, the stability and performance is extremely sensitive to small

changes in the transducer dynamics. Changes in transducer dynamics can be attributed to

environmental conditions, such as the temperature of the windings, and magnetic losses. In-

cluding additional transducer dynamics into the model may improve system stability and is

open to further investigation. In practice, by tuning the magnitudes of the negative inductor-

resistor controller, the control effort can be toned down. Due to the ad hoc nature of this

approach, it is difficult to accurately manipulate the trade-off between control effort and

damping performance. For example, using a negative inductor-resistor controller, it is im-

possible to distribute, concentrate or mitigate the control energy associated with individual

structural modes. It is also impossible to minimise a specific performance function not pro-

portionally related to the plunger velocity. In cases where the goal is not simply to reduce

the magnitude of plunger velocity, such as in acoustic, isolation and suspension systems, the

negative inductor controller is of little use. In spite of the associated problems, this technique

warrants mention due to its inherent simplicity and utility in gaining an intuitive understand-

ing of the abstract controllers generated from an automated synthesis process such as LQR

or H2.

For the impedance synthesis technique, the connection of an electrical impedance to the ter-

minals of an electromagnetic coil is equivalent to implementing a standard feedback controller

around the mechanical system. By revealing the underlying feedback structure and casting

it as a typical control problem, an impedance can be found that minimises some arbitrary

performance objectives. The presented techniques are successfully applied to the design and

implementation of an LQR and H2 based active impedance controller. Without the need for

any external sensors, the resonant peak of an experimental single-degree-of freedom system

was substantially reduced in magnitude by up to 19.4 dB.

Three electromagnetic shunt controllers were successfully applied to an experimental single

mass-spring-damper system. The proposed theoretical controllers were found to agree with

the experimental data and verified the proposed technique. It was found that the proposed

controllers produced similar experimental outcomes, i.e. peak attenuation. However, the

capacitor-resistor controller was considered to be the more favourable due to its simplicity

and durability.

Current and future work involves both the exploration of additional applications and devel-

opment of the control theory associated with the synthesis step, as described in Section 4.4.3

and to develop similar control strategies, as proposed in Section 2.2 i.e. to apply multiple

mode shunt or switched shunt controllers to more complex electromechanical systems.
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Overall, this chapter confirms, through theoretical and experimental verification, the potential

of the electromagnetic shunt damping technique.
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Chapter 5

Electromagnetic Shunt Isolation

In Chapter 4, electromagnetic shunt damping was presented. In this chapter, electromagnetic

shunting control will be applied to a simple isolation system. This technique will be referred

to as electromagnetic shunt isolation. The effect of electromagnetic shunt controllers is stud-

ied theoretically and then validated experimentally on a simple electromagnetic isolation

apparatus.

5.1 Background

The objectives of damping and isolation of vibration are sometimes confused. In a few words,

damping is regarded as the reduction of amplitude of the mechanical system within a limited

bandwidth near the resonance frequency. Isolation, however, is defined as supporting a load

within a particular bandwidth ωc, and attenuation of high frequency components above ωc

as shown in Figure 5.1.

Vibration isolation problems can be classed in two different groups. The groups are: (1) an

isolated mass may be subjected to a disturbance (normally a force) which propagates into

the base structure, and (2) a disturbance generated by the base structure which propagating

into the isolated mass. The second case is more commonly found in practice, therefore, this

chapter will solely focus on this scenario.

A key example of an isolation system is active suspension control for automobiles [20, 42, 47,

61, 65, 99, 100]. Normally an accelerometer, or force transducer, is used as a sensor while

an electromagnetic transducer is used as an actuator. With electromagnetic shunt control,
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Figure 5.1: Principle of an isolation system and isolation objectives.

both the sensor and actuator are combined together, as explained in Section 1.1, eliminating

the need for the sensor. From a theoretical point of view , the proposed control scheme is

considered to be perfectly collocated [78],which improves the stability and robustness of the

closed-loop system. For isolation applications, shunt control could minimise weight, and thus

be cost-effective.

5.2 Modelling

Consider the simple isolation system shown in Figure 5.2 (a). The isolation system consists

of a linear spring in parallel with a passive damper, where m is the mass, k and d are the

stiffness and damping coefficients respectively. The equation of motion is defined as

mẍ(t) + dẋ(t) + kx(t) = dẏ(t) + ky(t), (5.1)

where (··) and (·) denote the acceleration and velocity of x(t) and y(t). The resonance

frequency of the mechanical system is ωn =
√

k
m

and the amount of damping is defined

by the damping ratio ζ, where ζ = d√
4mk

. The transfer function between the disturbance

displacement y and the mass displacement x is given by

T (s) , Gyx(s) =
ds + k

ms2 + ds + k
=

2ζs
ωn

+ 1

s2

ω2
n

+ 2ζs
ωn

+ 1
. (5.2)

Equation (5.2) is commonly referred to as the transmissibility ratio T (s). T (s) can be plotted

against normalised frequency ω
ωn

for various values of damping ratio ζ, as shown in Figure

5.3. Many interesting observations can be learned from Figure 5.3. They are:
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Figure 5.2: Simple mass-spring-damper isolation systems: unforced (a) and forced systems (b).
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1. When the disturbing frequency coincides with the natural frequency of the system ωn,

the system vibrates at the frequency with larger amplitudes.

2. The frequency where the curve crosses over the 0 dB, the disturbed frequency is equal

to ωc =
√

2ωn. This is commonly referred to as the critical frequency ωc and is the

point where the influence of high frequency attenuation begins.

3. At low frequencies, below the resonance of the system ωn, the displacement of the

mass x follows the displacement of the base y as if the isolator was infinitely rigid.

However, at higher frequencies greater than the resonance of the system ωn, the relative

displacement of the mass gradually diminishes.

4. By increasing the damping ratio ζ of the system, the resonance that appears at the

natural frequency decreases but, unfortunately, the gradient of the high frequency roll-

off also decreases.

5. To maintain reasonable roll-off at high frequencies, while decreasing the peak amplitude

at the resonance, a control algorithm is needed.

Observe in Figure 5.3 that when ζ = 0, the high frequency roll-off is 1/s2 (−40 dB/decade)

while a very large amplitude is seen near the natural frequency ωn. On the other hand, when

the damping ratio ζ is increased, the amplitude at the resonance is reduced and the roll-off to

1/s (−20 dB/decade) is also reduced. As a result, the design of a passive mechanical damper

involves the compromise between the resonance and the high frequency attenuation.

5.2.1 Shunted Composite Electromechanical System

Consider the simple isolation system, as shown in Figure 5.2 (a). By taking the Laplace of

Equation (5.1), the following transfer function relating the applied base velocity $(s) and

isolated mass velocity ν(s) is

T (s) , G$ν(s) =
ν(s)

$(s)
=

ds + k

ms2 + ds + k
, (5.3)

where ν(s) = sx(s) and $(s) = sy(s). It should be noted that G$ν(s) is also referred to as

the transmissibility ratio T (s).

For the forced isolation problem, as shown in Figure 5.2 (b), a control force Fe(t) is placed

between the mass and the base. For this system, the equation of motion is

mẍ(t) + dẋ(t) + kx(t) + Fe(t) = dẏ(t) + ky(t). (5.4)
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By taking the Laplace of Equation (5.4), the following relationship can be found

ν(s) =
ds + k

ms2 + ds + k
$(s) − s

ms2 + ds + k
Fe(s), (5.5)

where $(s) and Fe(s) are the inputs to the system, as shown in Figure 5.4.

Now, consider a shunted electromagnetic transducer, as shown in Figure 5.5. To determine the

opposing force Fe(s), the simplified electrical model of the shunted electromagnetic transducer

needs to be considered. Ohm’s law states that

Vz(s) = Iz(s)Z(s), (5.6)

where Vz(s) is the voltage across the terminals of the shunt impedance Z(s) and Iz(s) is

the corresponding current. According to Kirchhoff’s voltage law, the following relationship

between Ve(s) and Vz(s), is

Vz(s) = Ve(s) − (Les + Re)Vz(s), (5.7)

which implies

Vz(s) =
Z(s)

Z(s) + Les + Re
Ve(s). (5.8)

For an ideal electromagnetic transducer, the voltage Ve is proportional to the relative velocity,

that is

Ve(s) = cνv (ν(s) − $(s)) , (5.9)
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Figure 5.5: Electromagnetic closed-loop isolation system.

where cνv is the electromechanical coefficient relating relative velocity to voltage. By substi-

tuting Equations (5.9) into (5.8), the following correlation can be found, that is

Vz(s) =
Z(s)

Z(s) + Les + Re
cνv (ν(s) − $(s)) . (5.10)

Alternatively, the current-flowing through the shunt Iz(s) is

Iz(s) =
Vz(s)

Z(s)
=

cνv

Z(s) + Les + Re
(ν(s) − $(s)) (5.11)

and the opposing shunt force Fe(s) = cifIz(s), assuming a linear electromagnetic transducer

Fe(s) is

Fe(s) =
cνvcif

Les + Re + Z(s)
(ν(s) − $(s)) (5.12)

= K(s) (ν(s) − $(s)) .

Substituting (5.12) into (5.5), the electromagnetic shunt isolation system $(s) to ν(s) is

T̃ (s) , G̃$ν(s) =
(d +

cνvcif

Les+Re+Z(s))s + k

ms2 + (d +
cνvcif

Les+Re+Z(s))s + k
, (5.13)

as shown in Figure 5.6. The closed-loop transmissibility ratio transfer function T̃ (s) is in the

form of a regulator feedback control problem where the relative velocity ν(s)−$(s) is to be

regulated to zero for low frequencies. Also, the effective controller K(s) is parameterised by

the impedance Z(s), as shown in Figure 5.6.
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5.2.2 State-space Shunted Composite Electromechanical System

The general input-output model of the isolation system is shown in Figure 5.7, where the

disturbance velocity is $(t) and control signal is Fe(t). The outputs of the plant are mass

velocity ν(t) velocity of the base and mass ν(t) − $(t). That is,
[

ν̇(t)

ν(t) − $(t)

]

=

[

− d
m

− k
m

1 0

] [

ν(t)

x(t) − y(t)

]

+

[

d
m

1
m

−1 0

] [

$(t)

Fe(t)

]

[

ν(t)

ν(t) − $(t)

]

=

[

1 0

1 0

] [

ν(t)

x(t) − y(t)

]

+

[

0 0

−1 0

] [

$(t)

Fe(t)

]

,

where the states of the plant are
[

ν(t) x(t) − y(t)
]

.

From the Section 4.3.2, the electromagnetic transducer system E was seen as having the

following two-input-two-output system:

ẋe =

[−Re

Le

]

xe +
[

cνv −1
]

[

ν(t) − $(t)

Vz(t)

]

[

Fe(t)

Iz(t)

]

=

[

− cif

Le

1
Le

]

xe, (5.14)

where the above Equation (5.14) can be represented in diagram form, as shown in Figure

(5.8).

For the electromagnetic isolation system, systems P and E can be combined to obtain the
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following composite system G, where the dynamics of the transducer are introduced to the

plant, as shown in Figure 5.9. The state-space representation of G is









ν̇(t)

ν(t) − $(t)

ẋe(t)









=









− d
m

− k
m

− 1
m

cif

Le

1 0 0

cνv 0 −Re

Le

















ν(t)

x(t) − y(t)

xe(t)









+









d
m

0

−1 0

−cνv −1









[

$(t)

Vz(t)

]

[

ν(t)

Iz(t)

]

=

[

1 0 0

0 0 1
Le

]









ν(t)

x(t) − y(t)

xe(t)









. (5.15)

Alternatively, the system G can be written as

ẋg(t) = Axg(t) + B1$(t) + B2Vz(t)

ν(t) = C1xg(t)

Iz(t) = C2xg(t), (5.16)

where

A =









− d
m

− k
m

− 1
m

cif

Le

1 0 0

cνv 0 −Re

Le









xg(t)=









ν(t)

x(t) − y(t)

xe(t)









B1 =









d
m

−1

−cνv









B2 =









0

0

−1









C1 =
[

1 0 0
]

C2 =
[

0 0 1
Le

]

.

5.3 Proposed Shunt Controllers

The following subsections introduce a number of techniques for the design of impedance or

admittance, controllers to provide damping and high frequency attenuation for a simple mass-

spring-damper isolation system. The first approach considers a passive capacitor-resistor

impedance as developed in Section 4.4.1. The second technique develops a controller from

some of the fundamental elements of the electromechanical system. Finally, an impedance

is constructed by parameterising the system as a standard pole placement feedback control

problem. All controllers developed are validated on an isolation apparatus.
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5.3.1 Capacitor-Resistor Controller

In the previous section, Section 4.4.1, one possible shunting technique that could be considered

is shunting the terminals of an electromagnetic transducer with a series capacitor-resistor

(C − R), as shown in Figure 4.12. The shunt impedance is

Z(s) =
1

Cs
+ R, (5.17)

where C is tuned to the resonance frequency of the isolation system, i.e.

C =
1

ω2
nLe

=
1

(

k
m

)

Le

and R is tuned for the required damping.

The electromagnetic shunt force is equivalent to

Fe(s) =
cνvcif

Les + Re + Z(s)
(ν(s) − $(s))

=
cνvcifkLes

kL2
es

2 + kLe (Re + R) s + m
(ν(s) − $(s)) (5.18)

and the equivalent closed-loop transmissibility ratio is

T̃ (s) ,
(d +

cνvcif

Les+Re+Z(s))s + k

ms2 + (d +
cνvcif

Les+Re+Z(s))s + k

=
(d +

cνvcif kLes

kL2
es2+kLe(Re+R)s+m

)s + k

ms2 + (d +
cνvcif kLes

kL2
es2+kLe(Re+R)s+m

)s + k
. (5.19)

Note the effective controller K(s) is equivalent to

K(s) =
cνvcifkLes

kL2
es

2 + kLe (Re + R) s + m
.

In order to determine an optimal value for the shunt resistance R, an optimisation approach

could be considered. By minimising the H2 norm of the closed-loop system T̃ (s), or G̃$ν(s),

the appropriate resistance value R can be determined. This technique is very similar to the

technique proposed in Section 4.4.1. This required a solution to the following optimisation

problem to be found

R∗
t =

arg min

Rt > 0

∥

∥

∥T̃ (s)
∥

∥

∥

2
(5.20)

=
arg min

Rt > 0

∥

∥

∥

∥

∥

∥

(d +
cνvcif kLes

kL2
es2+kLeRts+m

)s + k

ms2 + (d +
cνvcif kLes

kL2
es2+kLeRts+m

)s + k

∥

∥

∥

∥

∥

∥

2

, (5.21)

where the total resistance Rt is equivalent to Rt = Re + R.
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5.3.2 Ideal Controller

The shunt impedance Z(s) is designed such that the shunted system T̃ (s) is equivalent to
ds+k

ms2+(d+β)s+k
, where β effectively adds damping to the system. That is

T̃ (s) ,
(d +

cνvcif

Les+Re+Z(s))s + k

ms2 + (d +
cνvcif

Les+Re+Z(s))s + k
≡ ds + k

ms2 + (d + β)s + k
. (5.22)

Then, the ideal control impedance Z(s) is

Z(s) = −cνvcifms2

β(ds + k)
− cνvcifs

(ds + k)
− Les − Re. (5.23)

Similarly, the strictly proper admittance Y (s) is

Y (s) = − β (ds + k)

(Leβd + cνvcifm) s2 + (Reβd + Leβk + cνvcifβ) s + Reβk
. (5.24)

By substituting Equation (5.23) into (5.12), the force generated is determined by the elec-

tromagnetic shunt as

Fe(s) = − β(ds + k)

s(β + ms)
(ν(s) − $(s)) (5.25)

and, therefore, the effective controller is equivalent to

K(s) = − β(ds + k)

s(β + ms)
. (5.26)

5.3.3 Impedance Synthesis

The purpose of the controller will be to move specific poles of the system further into the

left-half plane without affecting the zeros of the system. To achieve this, a controller needs to

be designed that effectively adds mechanical damping to the electromechanical system. This

is achieved by allowing the damping term d of the open-loop matrix A to become d̃ = d + α,

where α is some positive gain. That is, the effective closed-loop matrix Ã becomes

Ã =









−d̃
m

−k
m

−cif

mLe

1 0 0

cνv 0 −Re

Le









. (5.27)

therefore the desired closed-loop poles p are the eigenvalues of Ã.

Now, given the system

ẋg(t) = Axg(t) + B2Vz(t) (5.28)
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Figure 5.10: Composite plant G controlled by Z(s), an impedance consisting of the state-

feedback controller K and Kalman filter O.

and p of desired closed-loop pole locations, Ackermann’s formula [68] can be used to calculate

a gain vector K such that the state-feedback Vz(t) = −Kxg(t) places the closed-loop poles

at the locations p. In other words, the eigenvalues of A − B2K match the entries of p.

As state-feedback Vz(t) = −Kxg(t) is not implementable without full state measurement, a

linear observer is required, as shown in Figure 5.10. It is possible, however, to derive a state

estimate x̃g(t) such that Vz(t) = −Kx̃g(t) remains optimal for the output-feedback problem.

This state estimate is generated by the Kalman filter [68]

d

dt
˙̃xg(t) = Ax̃g(t) + B2Vz(t) + L(Īz(t) − C2x̃g(t))

with inputs Vz(t) (control) and Īz(t) (measurement). With the inclusion of measurement

noise η, as shown in Figure 5.10, the system representation (5.16) becomes

ẋg(t) = Agxg(t) + B1$(t) + B2Vz(t)

ν(t) = C1xg(t)

Iz(t) = C2xg(t) + η.

The noise covariance data

E {$$′} = Qn E {ηη′} = Rn

determines the Kalman gain L through an algebraic Riccati equation [98].
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The Kalman filter is an optimal estimator when dealing with Gaussian white noise η [17].

Specifically, it minimises the asymptotic covariance [68]

lim
t→∞

E
{

[xg(t) − x̃g(t)] [xg(t) − x̃g(t)]
′} , (5.29)

of the estimation error xg(t) − x̃g(t).

Based on Qn and Rn, a Kalman observer [68] that minimises (5.29) can be found through the

solution of an algebraic Ricatti equation [98]. The ratio of Qn to Rn essentially represents

the confidence in the measured variable Iz(t) and model G. In this work, Qn and Rn are not

quantified and simply treated as design parameters influencing the closed-loop pole locations,

damping performance and closed-loop stability.

5.4 Experimental Verification

To verify the proposed shunt controller designs, each technique will be applied to an experi-

mental electromechanical isolation apparatus.

5.4.1 Electromagnetic Isolation Apparatus

To support the proposed electromagnetic shunt isolation technique, experiments were carried

out on a simple electromagnetic isolation apparatus, as shown in Figure 5.11. The appara-

tus consists of five identical Jaycar Electronics1 subsonic transducers Cat. XC-1008. Each

transducer consists of a permanent toroid magnet coil, supporting frame, magnetic circuit

and flexible supports, as shown in Figure 5.12. Each transducer is mechanically equivalent

to the electromagnetic mass-spring-damper, as shown in Figure 5.12.

By connecting electromagnetic transducers together, as shown in Figure 5.13, when the iso-

lation transducer is the isolated mass-spring-damper system and the base transducers as

the base disturbance, a simple experimental isolation system is obtained. Note that base

transducers are bolted to the ground. For this work a Newport RS 3000 optical table was

utilised.

Now a disturbance current Id(s) is applied to the base transducer to simulate a base distur-

bance so the transmissibility ratio T (s) of the isolated mass can be measured. To measure

the transmissibility ratio, two B&K accelerometers were used to measure the applied base

1http://www.jaycar.com.au
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Figure 5.11: Isolation experimental apparatus.
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Figure 5.12: Electromagnetic transducer cross section (a) and mechanical equivalent (b).
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Figure 5.13: Sideview of the experimental isolation apparatus. Isolation transducer is shunted

by electrical impedance or admittance while applying a base disturbance current Id(s) to base

transducers.

velocity $(s) (accelerometer 2), and the isolated mass velocity ν(s) (accelerometer 1), as

shown in Figure 5.13. An experimental magnitude frequency response was obtained for the

transmissibility ratio, i.e. T (s) , G$ν(s), as illustrated in Figure 5.14.

To model the experimental isolated apparatus; the isolated mass m, the damping constant

d, the spring constant k, the coil inductance Le and the coil resistance Re, the electrome-

chanical coefficients cνv and cif need to be determined. The isolated mass, coil inductance

and resistances can all be measured directly, while the damping and spring constant can be

observed by using the resonance frequency data, i.e. ωn can be determined from Figure 5.14,

d = 2ζωnm and k = ω2
nm. To determine the electromechanical coefficients cνv and cif , a

disturbance current Id(s) is applied to the base transducers. Assuming the transducer 1 is

linear, isolation transducer voltage and relative velocity of the isolation mass ν(s) − $(s)

can be measured, i.e. Ve(s)
ν(s)−$(s) = cνv ≈ cif . Therefore, the experimental parameters for the

isolated apparatus are as listed in Table 5.1.
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Figure 5.14: Experimental (−−) and simulated (—) transmissibility ratio T (s).

Parameter Symbol Unit

Isolated mass m 0.4 Kg

Damping constant d 2.18 Nsm−1

Spring constant k 29.4 kNm−1

Electromagnetic coupling cνv 3.65

Electromagnetic coupling cif 3.6

Coil inductance Le 0.320 mH

Coil resistance Re 4.0 Ω

Table 5.1: Electromagnetic transducer parameters.
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Figure 5.15: Magnitude and phase response for the capacitor-resistor controller.

5.4.2 Shunt Controllers

Capacitor-Resistor Controller

Using the equations described in Section 5.4.1, C = 0.0414 F and R = −3.9 Ω can be derived.

For the passive impedance, magnitude-phase for the controller can be plotted, as shown in

Figure 5.15.

For the shunt controller design, the desired open-loop and closed-loop pole locations for the

shunted system are shown in Figure 5.16. The open-loop and closed-loop transmissibility

ratio response for the system can be plotted, as shown in Figure 5.17.

Experiments were performed on the experimental apparatus using the current-controlled-

voltage-source (CCVS), as described in Section 4.5.2. Experimental results for transmissibil-

ity ratio are shown in Figure 5.17.

From simulation and experimentation, as shown in Figure 5.17, the passive controller has

considerably damped the resonance by 28.3 dB, but unfortunately it has also decreased the

high frequency attenuation.
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Figure 5.16: Open-loop (©) and closed-loop (×) poles for the isolation system.
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Figure 5.17: Magnitude T (s) response for the capacitor-resistor controller. Simulated open-loop

(−−) and closed-loop (—), and experimental open-loop (− · −) and closed-loop (· · · ).
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Figure 5.18: Poles (×) and zeros (©) of the ideal impedance.

Ideal Controller

Assuming β = 24.7, the poles and zeros for the ideal controller (5.23) can be determined, as

shown in Figure 5.18. In Figure 5.19, the ideal impedance of the resulting Z(s) is plotted

together with that of the negative coil impedance i.e. − (Les + Re). Note at low frequencies

the ideal controller looks very similar to that of the negative coil impedance i.e. − (Les + Re).

To validate the proposed impedance Z(s), the open-loop and closed-loop pole locations for

the isolation system can be simulated, as shown in Figure 5.20. Simulated open-loop and

closed-loop transmissibility ratio response is also shown in Figure 5.21.

By applying the proposed admittance (5.24) to the isolation apparatus using voltage-controlled-

current-source, described in Section 4.5.2, the experimental open-loop and close-loop re-

sponses can be measured. These are plotted in Figure 5.21. From Figure 5.21, it can be

observed that both resonant peak reduction of 21.6 dB and high frequency attenuation have

been achieved.

The proposed Z(s) can be presented as some type of an impedance network consisting of

capacitors, inductors and resistors. From observation, it was noted that the impedance

network consists of two reactive and two real elements. These impedances could consist

of both passive and/or active circuit elements. After an exhaustive search, the following
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Figure 5.19: Magnitude and phase response for the ideal controller (—) and negative coil

impedance (−−).
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frequency poles are not shown.
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Figure 5.21: Magnitude T (s) response for the ideal controller. Simulated open-loop (−−) and

closed-loop (—), and experimental open-loop (− · −) and closed-loop (· · · ).

impedance network, as shown in Figure 5.22, was considered. That is

Zβ(s) =
1

Cβs + 1
Rβ2

+ Lβs + Rβ1
, (5.30)

where the inductor Lβ , capacitor Cβ , and resistors Rβ1
and Rβ2

are

Lβ = −
(

cνvcifm

βd
+ Le

)

Cβ =

(

βd2

cνvcifk (βd − km)

)

Rβ1
= −

(

cνvcif (βd − km)

βd2
+ Re

)

Rβ2
=

(

cνvcif (βd − km)

βd2

)

.

Since Z(s) is known, the required parameters for Zβ(s) can be determined using Equation

(5.30) that is listed in Table 5.2.

146



R
1

L

RCZ β

β β

β 2β

Figure 5.22: Impedance network for Zβ(s).

Symbol Unit

Lβ −0.0517 H

Cβ −1.0323 × 10−7 F

Rβ1
699.94 Ω

Rβ2
−703.93 Ω

Table 5.2: Zβ(s) parameters.

Impedance Synthesis

Similar to the procedure presented in Section 4.5.3, Figure 5.23 shows the gains in Ta-

ble 5.3. The voltages V1 through V4 represent the signals applied to, or sensed from, the

current-controlled-voltage-source (CCVS), as described in Section 4.5.2. The required shunt

impedance applied to the electromechanical system is

Zc(s) =
Vz(s)

Iz(s)
= a3C(s)a4. (5.31)

Gain Unit

a1 1.0 ms−1/V

a2 1.0 V/ms−1

a3 1.0 V/V

a4 1.0 V/A

Table 5.3: External gains associated with the experimental system.
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Figure 5.24: Simulated (—) and experimental (−−) magnitude frequency responses (in dB).
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Figure 5.25: Simulated (—) and experimental (−−) phase frequency responses (in degrees).
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To validate the proposed model for the electromechanical isolation system, experimental

frequency response data was obtained using the same procedure as in Section 4.5.3. The

magnitude and phase frequency responses are shown in Figures 5.24 and 5.25. From the

previous figures a satisfactory correlation between the theoretical model and experimental

data was obtained, validating the proposed model of the electromagnetic isolation apparatus.

As discussed in Section 5.3.3, the Matlab place command can be used to design the state-

feedback controller K. Assuming α = 46, the state-feedback controller K is

K =
[

38.9 −300.5 −115.0
]

.

An observer is required to estimate the system state from the measured shunt current Iz. A

Kalman observer was designed to estimate the system state x̃g(t) utilising the measured shunt

transducer current Iz and control signal Vz. Referring to Section 5.3.3, the disturbance and

output noise process covariance matrices Qn and Rn were chosen to be 3 and 0.1 respectively.

Such a weighting, although not quantitative, expresses moderate confidence in the fidelity of

the measured variable Iz.

By concatenating the K gain matrix and the Kalman observer, and compensating for the

system gains a3 and a4, the actual impedance presented to the shunt transducer can be

determined as

Zc(s) =
−2.448 × 104s2 − 2.193 × 108s + 1.308 × 1011

s3 + 6.345 × 104s2 + 9.247 × 107s − 4.219 × 1010
. (5.32)

In Figure 5.26, the complex impedance of the resulting controller is plotted together with

that of the negative coil impedance, i.e. − (Les + Re). A negative coil impedance connected

to the true coil impedance effectively removes the source impedance from the transducer.

One impedance has a tendency to mimic the other impedance over a certain frequency range.

The pole-zero map of the controller is shown in Figure 5.27.

After examining the open-loop and closed-loop pole locations in Figure 5.28, it can be ap-

preciated that the controller is clearly acting to increase the system damping while retaining

high frequency attenuation. Corresponding mitigation of the transfer function from an ap-

plied disturbance to the measured vibration can be seen in the frequency domain, Figure

5.29. The resonant peak has been experimentally damped by 26.2 dB.

The proposed Zc(s) can be presented as some type of impedance network consisting of ca-

pacitors and resistors. To determine the impedance network structure, Zc(s) can be broken
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negative coil impedance (−−).
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Figure 5.29: Magnitude T (s) response to the ideal controller. Simulated open-loop (−−) and

closed-loop (—), and experimental open-loop (− · −) and closed-loop (· · · ).
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Figure 5.31: Impedance network for Zc(s).

into its first-order elements by taking a partial-fraction expansion. Assuming

Zc(s) =
r1

s − p1
+

r2

s − p2
+ . . . +

rn

s − pn
+ k

=
1

1
r1

s − p1

r1

+
1

1
r2

s − p2

r2

+ . . . +
1

1
rn

s − pn

rn

+ k

=
1

C1s + 1
R1

+
1

C2s + 1
R2

+ . . . +
1

Cns + 1
Rn

+ Rk, (5.33)

where
{

C1 = 1
r1

, C2 = 1
r2

, . . . , Cn = 1
rn

}

,
{

R1 = − r1

p1
, R2 = − r2

p2
, . . . , Rn = − rn

pn

}

and Rk = k,

are the impedance network structure for Equation (5.33) as shown in Figure 5.30.

Performing the partial-fraction expansion on Equation (5.33), the network parameters for Fig-

ure 5.30 are listed in Table 5.4. Therefore, for the isolation system, the following impedance

network is shown in Figure 5.31.
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Symbol Unit

C1 −4.6666 × 10−5 F

C2 −2.9476 × 10−4 F

C3 2.9218 × 10−3 F

R1 −0.34595 Ω

R2 −1.8159 Ω

R3 −0.93883 Ω

Table 5.4: Zc(s) parameters.

5.5 Discussions

In this chapter, the objective was to apply electromagnetic shunt control to a simple mechan-

ical isolation system which has been defined as electromagnetic shunt isolation. The plant

for the isolation system was found to be more complicated compared to the electromagnetic

shunt damping system described in Chapter 4. This complexity can be attributed to the

isolation system being modelled as a regulator feedback control problem with filtered input

disturbance.

Three electromagnetic shunt controllers were developed and applied to a simple experimental

isolation apparatus. All control strategies were designed to achieve resonant peak reduction

and high frequency attenuation, both theoretically and experimentally.

The first proposed controller, capacitor-resistor controller, technique is very effective around

the resonance, but offers limited attenuation at higher frequencies, shown in Figure 5.17. As a

result, the design of a passive shunt involves a trade-off between the resonance peak damping

and the high frequency attenuation. In spite of the associated problems, this technique

warrants mention due to its inherent simplicity.

The second proposed controller, ideal impedance, has two key features. They are: (1) the

impedance has a very similar structure to the negative inductor-resistor, as proposed in Sec-

tion 4.4.2, but contains two additional terms, i.e. − cνvcif ms2

β(ds+k) − cνvcif s

(ds+k) , and (2) the impedance

contains negative or active elements. Through simulation and experimentation on the simple

isolation system, the proposed controller achieved both peak damping and high frequency

attenuation. Although some associated problems were encountered during experimentation,

it requires an accurate measurement of system parameters. That is, the ideal impedance

relies solely on estimates/measurements of m, d, k, Le, Re, cνv and cif . Therefore, the pro-

posed impedance is extremely difficult to experimentally tune because of the discrepancies in
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system parameters.

Impedance synthesis, the third proposed controller, showed that connecting an electrical

impedance to the terminals of an electromagnetic isolation system is equivalent to imple-

menting a standard feedback control problem. A method using pole placement and a Kalman

observer were used to design an appropriate impedance. While designing the impedance syn-

thesis controller, two important objectives were considered; resonant peak damping and high

frequency attenuation. Both of these objectives were achieved through simulation and experi-

mentation on a simple isolation system. Once constructed, the proposed impedance controller

can then be broken into first-order elements, capacitors and resistors. Then an impedance

network can be constructed using the first-order elements. Unfortunately, this impedance net-

work consists of both passive and active circuit elements. Therefore, the synthetic impedance,

as described in Section 4.5.2, is recommended for practical implementation instead of using

passive elements (resistors and capacitors) and negative impedance converters [59] (negative

resistors and negative capacitors).

From observation, the impedance synthesis technique was considered to be less sensitive to

small changes in transducer dynamics and was considered to be more robust compared to the

ideal controller. The impedance synthesis technique outperformed the other control strategies

by maintaining peak reduction and high frequency attenuation. While the capacitor-resistor

controller did provide peak attenuation, it did not provide high frequency attenuation. The

ideal controller maintained both peak and high frequency attenuation but proved to be dif-

ficult to tune the experimental parameters. Therefore, the author suggests the impedance

synthesis technique would be the more preferred method for electromagnetic shunt isolation.

Current and future work will involve both the exploration of the control theory associated

with the synthesis step and inclusion of uncertainty in the plant model to guarantee robustness

and stability.
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Chapter 6

Proof-Mass Inertial Vibration

Control

In this chapter, vibration reduction using an electromagnetically actuated inertial drive will

be discussed. Both passive and active drive dynamics are considered when constructing a

model of the mated mechanical and inertial drive systems. In doing so, the performance of a

passive absorber can be augmented with an active feedback system. A method is presented

for the modelling, design and implementation of a shunt controlled electromagnetic inertial

drive for vibration suppression. By viewing the coil current and voltage as system inputs

and outputs, the task of impedance synthesis can be cast as a standard feedback design

problem. Arbitrarily objectives such as LQR, LQG, or H2 goals are easily specified. In

this work, displacement is minimised subject to a penalty on the inertial mass travel and

applied terminal voltage. Using this technique, the need for external sensors is eliminated,

significantly reducing the cost, complexity and sensitivity to transducer failure that in many

applications may preclude the use of an active control system.

6.1 Background

Tuned mass dampers, or inertial drives, are commonly used for mechanical vibration control

[51, 91]. Tuned mass absorbers utilise an inertial mass and tuned support to introduce

additional dynamics and mitigate vibration over a certain frequency range. Active vibration

control systems employ inertial drives to regulate the signal from an accelerometer or related

performance signal. Active feedback systems are known to provide better performance than
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Figure 6.1: Electrical and mechanical dynamics of an electromagnetic transducer.

tuned passive systems.

Although ideal inertial drives develop a pure reaction force in response to a driving current,

the flexures used to support the inertial mass effectively filter the applied force and introduce

additional passive dynamics, as shown in Chapter 5.

In Chapters 4 and 5, it has been seen that by connecting an electrical impedance to the termi-

nals of an electromagnetic coil, the relative mechanical velocity between the coil and magnet

can be reduced. A technique for the synthesis of active shunt impedances was presented in

Section 4.4.3. Using active synthesis, performance objectives other than minimisation of the

relative velocity are possible. Active electromagnetic shunt control is potentially applicable

to vibration damping, isolation systems and suspension systems.

Experiments are performed on a simple single-mode host structure with integrated electro-

magnetic transducer and suspended absorber mass. The combination of passive and active

control results in significant vibration suppression.

6.2 Modelling

In this section, the dynamics of an electromagnetic and mechanical system are studied in-

dependently, then combined to reveal the dynamics of a shunted electromagnetic inertial

actuator.
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In addition to disturbance input w, the model also includes force input Fe and relative velocity

output ν.

6.2.1 Electromagnetic Transducer Dynamics

The electrical and mechanical transducer dynamics are summarised in Figure 6.1. In response

to relative velocity ν and terminal voltage Vz, the transducer E develops a force Fe and

current Iz. When short-circuited, i.e. when Vz = 0, the transducer develops a force opposite

in direction to the relative coil velocity ν.

The following state-space representation of the coil admittance Yc(s) = 1
Les+Re

will be re-

quired as

ẋy(t) = Ayxy(t) + ByVz(t) (6.1)

Iz(t) = Cyxy(t),

where

Ay =

[−Re

Le

]

, By = [1] , Cy = [
1

Le
]. (6.2)

6.2.2 Mechanical System

The general model of a mechanical system is shown in Figure 6.2. In addition to various

application specific inputs and outputs to couple the system to an electromagnetic actuator,

the model requires a force input Fe and a relative velocity output ν. In a typical scenario,

the model would also describe the influence of a specific disturbance input w.

A single degree-of-freedom tuned-mass or inertial vibration control system is shown in Figure

6.3. The reaction force Fe generated by an electromagnetic actuator is employed to minimise

the vibration x2 resulting from a disturbance force Fd. The quantities denoted m, k, d, and
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x represent the mass (in Kg), the spring constant (in Nm−1), the damping coefficient (in

Nsm−1) and the displacement (in meters) respectively. The symbols ν̇ and ν will also be

used to represent acceleration and velocity.

The equations of motion governing the system can be written as

m1ν̇1(t) = −d1 (ν1(t) − ν2(t)) − k1 (x1(t) − x2(t)) + Fe(t) (6.3)

m2ν̇2(t) = d1 (ν1(t) − ν2(t)) + k1 (x1(t) − x2(t)) − d2ν2(t) − k2x2(t) − Fe(t) + Fd(t).

By choosing the state variables ν1, x1, ν2 and x2, that is xp(t) = [ν1(t) x1(t) ν2(t) x2(t)]
′

,

the system can be cast in the following state-space form:

ẋp(t) = Apxp(t) + Bp

[

Fd(t)

Fe(t)

]

(6.4)

[

x2(t)

ν1(t) − ν2(t)

]

= Cpxp(t),

where the subscript P denotes the mechanical plant and the output ν1 − ν2 represents the

relative velocity between the two masses. The system matrices are

xp(t) =













ν1(t)

x1(t)

ν2(t)

x2(t)













Bp =
[

Bp1 Bp2

]

=













0 1
m1

0 0
−1
m2

1
m2

0 0













(6.5)

and

Ap =













−d1

m1

−k1

m1

d1

m1

k1

m1

1 0 0 0
d1

m2

k1

m2

−(d1+d2)
m2

−(k1+k2)
m2

0 0 1 0













Cp =

[

Cp1

Cp2

]

=

[

0 0 0 1

1 0 −1 0

]

. (6.6)

A block diagram of the mechanical system (6.4) is shown in Figure 6.4. As the system includes

a control force input Fe and a relative velocity output ν, the model is easily coupled to that

of an electromagnetic transducer.

6.2.3 Shunted Composite Electromechanical System

As shown in Figure 6.5, a mechanical system P coupled to an impedance shunted electro-

magnetic transducer is considered. The force disturbance Fd is realised with the use of an
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Figure 6.4: Mechanical system (6.4) shown with force disturbance Fd and control inputs Fe and

a performance output x2 and the relative velocity output ν.
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auxiliary transducer and current source, e.g.

Fd(t) = CdId(t). (6.7)

Within the modelling framework introduced in the previous two subsections, i.e. by treating

the mechanical plant and shunted electromagnetic coil as shown in Figures 6.1 and 6.4, the

composite plant is easily constructed and demonstrated in Figure 6.6.

In Figure 6.6, the impedance Z(s) is interpreted simply as the transfer function relating coil

current to terminal voltage, appears analogous to a feedback controller for the electrome-

chanical system. By concatenating the mechanical and electromagnetic systems P and E,

as shown in Figure 6.7, the composite system is cast as a typical regulation problem for the

abstracted system G. The state equation of the electrical (6.2) and mechanical (6.4) systems

can be collected to describe the system G, therefore

ẋg(t) = Agxg(t) + Bg

[

Id(t)

Vz(t)

]

(6.8)

[

x2(t)

Iz(t)

]

= Cgxg(t),

where

xg(t) =

[

xp(t)

xy(t)

]

, Ag =

[

Ap −CeBp2Cy

ByCp2Ce Ay

]

(6.9)

and

Bg =

[

Bp1Cd 0

0 −By

]

, Cg =

[

Cp1 0

0 Cy

]

. (6.10)

6.3 Impedance Synthesis Controller Design

As shown in Figure 6.6, an impedance connected to a mechanically coupled electromagnetic

transducer can be viewed as parameterising a velocity feedback controller for the mechanical

system P . The following section introduces a technique for the synthesis of active impedance

controllers designed to minimise structural vibration.

The design objective is to minimise the displacement x2 whilst restraining both the magnitude

of control voltage Vz and the absorber mass travel x1 − x2. As the reaction force Fe results

in an acceleration of the absorber, at low frequencies the magnitude of available force is
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strictly limited by the maximum travel x1 − x2. In a linear quadratic sense, the objective is

to minimise

J =

∫ ∞

0

{

x2
2(t) + kvV

2
z (t) + kd (x1(t) − x2(t))

2
}

dt, (6.11)

where kv and kd represent weightings on the applied shunt voltage Vz and the absorber

mass travel x1 − x2. By substituting the state solutions into x1(t) and x2(t), the following is

obtained

J =

∫ ∞

0

{

xp(t)
′

C′
p1Cp1xp(t) + Vz(t)

′kvVz(t) + xp(t)
′

C′
p3kdCp3xp(t)

}

dt, (6.12)

where d1(t) − d2(t) = Cp3xp(t) and Cp3 =
[

0 −1 0 1
]

. Restated in the standard LQR

context,

J =

∫ ∞

0

{

xg(t)
′

Qxg(t) + u(t)′Ru(t)
}

dt, (6.13)

where

Q =
[

Cp1 0
]′ [

Cp1 0
]

+ kd

[

Cp3 0
]′ [

Cp3 0
]

(6.14)

and

R = kv. (6.15)

Through the solution of an algebraic Ricatti equation [98], a state feedback matrix K can be

found that minimises the objective function J .

6.3.1 Observer Design

As the state variables of the system xg(t) are not directly available, a linear observer is

required.

For impedance design, the ad hoc pole-placement approach to linear observer design becomes

difficult. Although an LQR state-feedback regulator is guaranteed (if R is the chosen diago-

nal) to result in a phase margin of at least 60 degrees at each plant input channel [69, 94], it

is well known that considerable degradation of the stability-margins is to be expected after

inclusion of the observer dynamics.

A more automated choice in observer design is the Kalman filter [17, 68]. Here, as shown

in Figure 6.8, the controller K(s) consists of an optimal state-feedback regulator K and

Kalman observer O. By the Certainty Equivalence Principle or Separation Theorem [98],

the two entities can be designed independently. After first finding K to minimise (6.13), a
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Kalman filter is then designed to minimize

Jk = lim
t→∞

E
{

[x(t) − x̃(t)] [x(t) − x̃(t)]′
}

. (6.16)

By the Certainty Equivalence Principle, the optimal K and O also result in minimisation of

the stochastic performance objective

J = E

{

lim
T→∞

1

T

∫ T

0

{

x′(t)Qx(t) + u(t)′Ru(t)
}

dt

}

. (6.17)

In this scenario, the original state-space system (6.8) is referred to with zero-mean uncor-

related Gaussian process models for the disturbance Id and additive measurement noise η.

With the inclusion of measurement noise, the system representation (6.8) becomes

ẋg(t) = Agxg(t) + Bg

[

Id(t)

Vz(t)

]

(6.18)

[

x2(t)

Iz(t)

]

= Cgxg(t) +

[

0

η

]

,

where Id and η satisfy

E
{

IdI
′
d

}

= Qn (6.19)

E
{

ηη′
}

= Rn.
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Figure 6.9: Proof-mass experimental apparatus.

Based on Qn and Rn, a Kalman observer that minimises (6.16) can be found through the

solution of an algebraic Ricatti equation [98]. The ratio of Qn to Rn essentially represents

the confidence in the measured variable Iz and plant model G. In this work, Qn, Rn and ku

are not quantified and simply treated as design parameters influencing the closed-loop pole

locations, damping performance and closed-loop stability.

6.4 Experimental Verification

To verify the modelling and design techniques presented in the preceding sections, each

method has been applied to an experimental electromechanical system.

6.4.1 Proof-Mass Inertial Experimental Apparatus

A photograph of the experimental apparatus shows the rigid body, flexible end supports,

mounting plate and coils as provided in Figure 6.9. Observe in Figure 6.10 that the apparatus

comprises two identical Jaycar Electronics1 subsonic transducers Cat. XC-1008. While the

lower magnet and flexures are fixed, the two connected transducer cases are free to vibrate

and represent the mass m2. The upper magnet forms the absorber mass m1. The physical

parameters of the electromagnetic and mechanical systems are summarised in Table 6.1.

1www.jaycar.com.au
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Figure 6.10: Cross-section of the experimental apparatus shown in Figure 6.9.

The main mass displacement x2 is measured using a PSV-300 Polytec Scanning Laser Vi-

brometer.

6.4.2 Impedance Synthesis

Using the same procedure, as discussed in Section 4.5.3, the gain associated with Figure 6.11

can be found in Table 6.2. The desired shunt impedance presented to the transducer by the

synthetic impedance, described in Section 4.5.2, is

Z(s) =
Vz(s)

Iz(s)
= a3C(s)a4. (6.20)

The magnitude and phase frequency responses are shown in Figures 6.12 and 6.13. In the

frequency domain there is a good correlation between the model and measured data.
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Parameter Symbol Unit

Spring constant k1 28.03 kNm−1

Damping coefficient b1 1.500 Nsm−1

Absorber mass m1 0.340 Kg

Spring constant k2 31.14 kNm−1

Damping coefficient b2 3.582 Nsm−1

Absorber mass m2 0.593 Kg

Coil inductance Le 41 mH

Coil resistance Re 2.315 Ω

Electromagnetic coupling Ce 3.408

Electromagnetic coupling Cd −6.714

Table 6.1: Electromechanical system parameters.

a
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1 a 2

a 4

V z I z
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w

u

z

y

K

a 3

x 2

Figure 6.11: External gains associated with the electromechanical system.

Gain Unit

a1 1.006 A/V

a2 1 V/m

a3 −1.012 V/V

a4 -10.01 V/A

Table 6.2: External gains associated with the experimental system.
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Figure 6.12: Simulated (—) and experimental (− −) magnitude frequency response (in dB).
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LQR Impedance Synthesis

As discussed previously in Section 6.3, a LQR controller can be designed to command the

shunt voltage Vz by minimising vibration x2. That is, LQR gain matrix was constructed to

minimise the following performance function

J =

∫ ∞

−∞

{

x2
2(t) + kvV

2
z (t) + kd (x1(t) − x2(t))

2
}

dt, (6.21)

where the factor kd = 1 and kv = 1 × 10−7. A Kalman observer was created to estimate

the system state xg(t) utilising the measured shunt transducer current Iz and control signal

Vz. Referring to Section 6.3.1, the disturbance and output noise process covariance matrices,

Qn and Rn were chosen to be 100 and 0.1 respectively. Such a weighting, although not

quantitative, expresses a moderate confidence in the fidelity of the measured variable Iz.

By concatenating the LQR gain matrix and Kalman observer and compensating for the

system gains a3 and a4, the actual impedance presented to the shunt transducer can be

determined. In Figure 6.15, the complex impedance of the resulting controller is plotted

together with that of the negative coil impedance i.e. negative inductor-resistor. The LQG

impedance has a tendency to mimic this impedance over a certain frequency range. The

pole-zero map of the LQG controller is shown in Figure 6.14.

After examining the open-loop and closed-loop pole locations shown in Figure 6.16, it can

be appreciated that the controller is clearly acting to increase the system damping. Corre-

sponding mitigation of the transfer function from an applied disturbance to the measured

vibration can be seen in both the frequency domain, Figure 6.17, and time domain, Figure

6.18. The action of the additional mass and electromagnetic shunt reduces the single-mass

resonant peak by a minimum of 23.2 dB. The shunted electromagnetic transducer reduces

the two-mass first and second resonant peaks by 18.7 and 23.6 dB respectively.

Note the additional dynamics at 20 and 60 Hz in Figure 6.17. These dynamics are due to

pivot modes of the structure about the base fixture. The stiffening effect of the controller

has a tendency to increase the frequency of low-profile pivot and sway modes. Such modes

would be absent in a more rigidly supported inertial drive.

6.5 Discussions

A technique has been presented for the control of vibration using an electromagnetically

actuated inertial drive. By viewing the coil current and voltage as system inputs and outputs,
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Figure 6.14: Poles (×) and zeros (©) of the LQG impedance.
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frequency observer poles are not visible within the scope of this plot.

standard synthesis techniques were applied to minimise displacement subject to a penalty on

the inertial mass travel and applied terminal voltage. Electromagnetic shunt control requires

no sensors, thus significantly reduces the cost and complexity.

Experiments were performed on a simple apparatus representing a scenario where the vi-

bration experienced by a host structure is controlled with a suspended absorber mass and

electromagnetic coil. In practice, the mass of the absorber is usually limited to about one

tenth the host structure. In this regard, the experiment is somewhat unrealistic as the mass

of the absorber is only slightly less than that of the host mass. The available control authority

is directly related to both the size of the mass and the available travel.

After adding the absorber mass, the passive dynamics split the original resonant mode into

two lightly damped secondary peaks. By then designing a suitable control impedance and pre-

senting it to the terminals of the electromagnetic coil, further vibration reduction is achieved

by augmenting the passive damping of the secondary modes. As the control design penalises

the absorber mass travel, which increases at low frequencies, the impedance suppresses higher

frequency vibration more heavily. The combination of passive and active dynamics reduces

the displacement response to a force input by up to 38 dB at the frequency of the original

resonance.
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Amp step in Id.

Suggested opportunities includes multi-drive multi-dimensional systems and restricted active

controller designs. The active impedance design contains negative reactive components and is

unstable in a theoretical control systems sense. Although, the connection of the electromagen-

tic transducer coil and control impedance is stable, an inherently stable effective controller is

more desirable. It is presently unclear if an unstable effective controller is necessary to result

in useful vibration control.

The overall objectives of this chapter were successfully fulfilled through theoretical and ex-

perimental verification.
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Chapter 7

Conclusions

The goal of this thesis was to develop new vibration control strategies by improving upon

existing techniques. This goal was achieved by the development of new piezoelectric shunt

controllers. Additionally, a new class of electromagnetic shunt controllers were also developed.

The following summarises the presented work, chapter by chapter, and gives suggestions for

future research opportunities. Detailed discussions can be found at the end of each chapter.

Part I of the thesis focused on piezoelectric shunt control and consists of two unique chapters,

Chapters 2 and 3. Electromagnetic shunt control was presented in Part II and consists of

three chapters, Chapters 4, 5 and 6.

Chapter 2 introduces the piezoelectric effect, and a method for modelling the dynamics of

a piezoelectric transducer and piezoelectric shunted damped system. A review of current

piezoelectric shunt damping techniques and their associated limitations were then discussed.

The synthetic impedance was reiterated as a solution to overcoming these limitations. Using

the synthetic impedance and developed models, four distinct piezoelectric shunt controllers

were proposed and validated on three different experimental apparatuses.

Chapter 3 was concerned with the problem of multi-mode shunt damping of structural vi-

brations using several piezoelectric transducers. Knowledge gained from Chapter 2, showed

that the problem can be cast as a multivariable feedback control problem whereby the ef-

fective controller was parameterised by multi-port impedance. Multi-port impedance was

then developed and validated on a piezoelectric laminated structure using multiple synthetic

impedances.
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Chapter 4 introduced electromagnetic transducers and a method for modelling the dynamics

of the transducer. Through experience gained in Part I, by attaching an electromagnetic

transducer to a mechanical structure and shunting the transducer with electrical impedance,

vibration could be controlled. This new vibration control technique was referred to as electro-

magnetic shunt damping. Although the underlying dynamics of this technique was different,

compared to that of the piezoelectric shunt damping, the resulting feedback control structure

or model was found to remarkably similar. Using the developed feedback model three novel

controllers were developed; capacitor-resistor, negative inductor-resistor and impedance syn-

thesis. The proposed controllers and feedback model were then validated experimentally on

a simple electromagnetic mass-spring-damper apparatus.

Chapter 5 extends concepts developed in Chapter 4 to a more complicated system: electro-

magnetic shunt control. A model was developed for the electromagnetic shunt control system

and three controllers were designed to satisfy two performance objectives. The first perfor-

mance objective was to provide damping at the resonance and the second was to maintain

high frequency attenuation. The proposed controllers were successfully applied theoretically

and experimentally to an isolation apparatus. Controllers included capacitor-resister, ideal

(derivative of a negative inductor-resistor) and impedance synthesis.

Chapter 6 combined the mechanical systems, damped and isolation, and knowledge gained

from Chapters 4 and 5; the proof-mass inertial vibration control was developed. A model

was then derived and validated for the experimental proof-mass inertial apparatus. Using

the model an impedance synthesis controller was then developed and verified experimentally

to satisfy the required performance objectives.

The knowledge gained from the above chapters, has lead to many open-ended questions.

When confronted with the two various shunt control strategies, that is, piezoelectric or elec-

tromagnetic shunt control, the obvious question comes to mind: ”Should piezoelectric or

electromagnetic shunt control be used?” The answer to this question depends on the appli-

cation. For example, a car suspension system requires relatively large displacements, say in

the order of ±100 mm, then an electromagnetic shunt control is chosen due to the stroke of

the electromagnetic transducer. On the other hand, a nano-positioning system requires ±10

µm displacements, and then a piezoelectric shunt control is chosen.

Other questions that may also arise: ”Which is the easiest shunt controller to implement?”

and ”Which shunt controller provides the best performance?” Although, there is of course

no fundamental answer to either of these questions, some important observations were found

throughout the thesis. For instance, all of the shunt controllers tend to resemble the complex
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impedance of an ideal negative transducer dynamics over some frequency band. Correspond-

ingly, the impedance synthesis controllers tend to be of a higher bandwidth, and therefore,

more difficult to implement. It is recommended using synthetic impedance, to synthesise the

required controllers.

Suggested work for shunt control involves both the exploration of more advanced applications

and development of the control theory associated with the synthesis techniques, i.e. LQG, H2,

or H∞. Additionally, the author stresses a high priority for the inclusion of model uncertainty

in the mechanical plant when considering shunt controllers to achieve improved robustness

and stability while maintaining acceptable performance objectives.
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